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Results expressed as Oaxaca-Blinder decompositions (expanded summary) 

The Oaxaca-Blinder decomposition1,2 is often used in labor economics to understand how much 
differences in group-characteristics explain disparities (or differences, more generally) in outcomes 
across groups e.g. disparities in log-wages across women vs. men, blacks vs. whites, union-members 
vs. non-members, etc. It partitions the total wage-difference into a portion due to differences in the 
distribution of potentially explanatory variables (termed the explained portion or composition 
effect), and a residual portion that cannot be explained by differences in these variables (termed 
the unexplained portion or structure effect). The unexplained portion is referred to as the structure 
effect because, as we will show, it captures the extent to which associations between the 
explanatory variables and the outcome vary across groups. Though the Oaxaca-Blinder 
decomposition was first introduced using linear models to decompose mean differences, more 
general forms have been introduced to decompose non-linear outcomes (Yun 20043; Farlie 20054), 
quantiles (Van Kerm 20155), and the entire distribution of the outcome (Rothe 20156) through 
various weighting (Dinardo 19967; Barsky 20028; Kline 20119; Elder 201510; Slóczynski 201511), 
matching (Black 200612), and other techniques (Firpo 200713).  
 
Here, we outline the Oaxaca-Blinder decomposition under linear models for the mean and discuss 
the conditions under which the Propositions 1 through 4 can be viewed as a causal version of the 
Oaxaca-Blinder decomposition with respect to interventions to set the distributions of the 
explanatory variables. The non-parametric results for propositions 1 through 4 could likewise be 
used to establish causal interpretations for the more general Oaxaca-Blinder decomposition 
methods for the mean,8,12,14 with the results for propositions 5 through 7 extending them to the case 
of time-dependent confounding. Previous literature has for the most part concerned causal 
inference with respect to interventions to set group membership e.g. race, gender, union-
membership etc6,8,9,12,14,15 (see pages 11-15 for details). With the exception of certain study 
designs,16,17 the interpretation of such an intervention is more difficult when the variable to be 
intervened upon is race or gender. We consider an alternative causal interpretation below.  
 
A review of marginal Oaxaca-Blinder decompositions 
 
Let us consider an Oaxaca-Blinder decomposition to estimate the portion of the racial disparity in 
log-wages Y that is statistically explained vs. not explained by racial differences in variables V1…Vn, 
where the comparison across race concerns blacks R=1 vs. whites R=0. A typical Oaxaca-Blinder 
decomposition would proceed by fitting two race-specific regressions for the outcome given the 
explanatory variables: 
 
E[Y|R = 1, v] = β0

𝑅=1  +  β1
𝑅=1v1  + β2

𝑅=1v2  + … +  βn
𝑅=1vn 

E[Y|R = 0, v] = β0
𝑅=0  +  β1

𝑅=0v1  + β2
𝑅=0v2  + … +  βn

𝑅=0vn 
 
Along with these we would estimate the mean value of each explanatory variable Vj among whites 
e.g. E[V1|R=0],…,E[Vn|R=0]. Then, the typical Oaxaca-Blinder decomposition expresses the 
marginal racial disparity in mean log-wages as a function of the explanatory variables’ means 
(among whites) and their race-specific regression parameters: 
 
E[Y|R=1]- E[Y|R=0] 
= (β0

𝑅=1- β0
𝑅=0) + ∑ (β1

𝑅=1 −  β0
𝑅=0)E[Vj|R = 0]n

j=1 + ∑ βj
𝑅=1{E[Vj|R = 1] − E[Vj|R = 0]}n

j=1  

 
In what is called the aggregate decomposition,14 the goal is to understand the extent to which the 
racial disparity is statistically explained by the fact that racial groups have different means for the 
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explanatory variables. The term ∑ βj
𝑅=1{E[Vj|R = 1] − E[Vj|R = 0]}n

j=1  comprises the ‘explained 

portion’ or what is also called the ‘composition effect.’ It captures racial differences in the mean 
values of the explanatory variables. The sum of the terms (β0

𝑅=1- β0
𝑅=0) and ∑ (βj

𝑅=1 −n
j=1

 βj
𝑅=0)E[Vj|R = 0] comprises the ‘unexplained portion’ or what is also called the ‘structure effect.’ It 

captures the portion of the disparity that cannot be statistically explained by differences in the 
means of explanatory variables i.e. differences in mean log-wages at the reference levels of the 
explanatory variables and also racial differences in the associations between each explanatory 
variable and the mean of the outcome log-wages. 
 
In what is called the detailed decomposition,14 the term βj

𝑅=1{E[Vj|R = 1] − E[Vj|R = 0]} is 

interpreted as the independent contribution of the explanatory variable Vj to the ‘explained portion’ 
i.e. the portion of the disparity that is statistically attributable to the fact that the mean of Vj differs 
across racial groups (independently of racial differences in the means of the other explanatory 
variables). The term (βj

𝑅=1 −  βj
𝑅=0)E[Vj|R = 0] is interpreted as the contribution of Vj to the 

‘unexplained portion’ i.e. the portion of the disparity that is statistically explained by differences in 
the race-specific associations between the explanatory variable Vj and the mean of log-wages. 
 
Defining conditional Oaxaca-Blinder decompositions 
 
The typical Oaxaca-Blinder decomposition concerns the marginal racial disparity in log-wages 
E[Y|R=1]- E[Y|R=0], but one can extend it to decompose the racial disparity within levels of 
conditioning variables C i.e. E[Y|R=1,c]- E[Y|R=0,c]. These conditioning variables differ from 
explanatory variables Vj in that they are used to define the population rather than to explain the 
disparity. To accomplish this, one first fits race-specific models for the mean of log-wages given the 
explanatory variables Vj and also the conditioning variables C. 
 

E[Y|R = 1, v, c] = β0
𝑅=1,c  + β1

𝑅=1,cv1  +  β2
𝑅=1,cv2  +  … + βn

𝑅=1,cvn + βc
𝑅=1,cc 

E[Y|R = 0, v, c] = β0
𝑅=0,c  + β1

𝑅=0,cv1  +  β2
𝑅=0,cv2  +  … + βn

𝑅=0,cvn + βc
𝑅=0,cc 

 
It can be shown that, the disparity within levels of C can be expressed as a function of the means of 
explanatory variables Vj given C=c and also the regression parameters that also condition on C=c:  
 
E[Y|R=1,c]- E[Y|R=0,c] 

=  (β0
𝑅=1,c − β0

𝑅=0,c) +  ∑ (βj
𝑅=1,c −  βj

𝑅=0,c)E[Vj|R = 0, c]n
j=1 + ∑(β

c′
𝑅=1,c − β

c′
𝑅=0,c)c′  +

 ∑ βj
𝑅=1,c{E[Vj|R = 1, c] − E[Vj|R = 0, c]}n

j=1  

 

In an aggregate decomposition,14 we can consider the term ∑ βj
𝑅=1,c{E[Vj|R = 1, c] − E[Vj|R =n

j=1

0, c]}  to comprise the ‘explained portion’ because it captures the portion of the disparity that is 
statistically attributable to the fact that the means of explanatory variables differs across racial 

groups within levels of C. We can consider the terms (β0
𝑅=1,c − β0

𝑅=0,c) and  ∑ (βj
𝑅=1,c −n

j=1

 βj
𝑅=0,c)E[Vj|R = 0, c] and ∑(β

c′
𝑅=1,c −  β

c′
𝑅=0,c)c′  to comprise the ‘unexplained portion’ because it 

captures the portion of the disparity that is statistically explained by the fact that associations 
between the explanatory variables and mean log-wages, and also the associations between the 
conditioning variables C and mean log-wages, differ by race. It follows then, that if there is no 
statistical association between race and the covariates C, the conditional decomposition has the 
same form as the marginal decomposition except that its components are specific to the levels of 
the conditioning variables C=c. We could also interpret the components for each explanatory 
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variable Vj in a detailed decomposition14 as we did so in the marginal decomposition but again, 
these interpretations would pertain to a specific level of the conditioning variables C=c.  
 
To the best of our knowledge, we have not seen such conditional forms of the Oaxaca-Blinder 
decomposition considered in the economics or epidemiology literature. While this extension is 
relatively minor, it has important implications when it comes to the causal interpretation of the 
decompositions. As described below if an explanatory variable Vj is exchangeable given the 
conditioning variables C and other explanatory variables that temporally precede Vj, then this 
permits causal inference where the ‘explained’ portion represents the disparity reduction under an 
intervention to equalize the explanatory variables Vj, and the ‘unexplained’ portion represents the 
corresponding residual disparity. The intervention does not completely eliminate disparities that 
arise due to any heterogeneity for the effect of Vj on Y across groups R, as this contributes to the 
residual disparity. We outline this for Propositions 1-4 below and provide all supporting proofs 
below. The causal interpretations given here are thus with respect to the explanatory variables V, 
rather than to hypothetical interventions on race itself as per other literature.8,9,12,14,15 
 
Propositions 1-4 expressed as causal implementations of the Oaxaca-Blinder decomposition 
 
Suppose now that we fit three sets of regressions: 
 
Set 1: 
E[Y|R=1,x,c]=ω0 + ω1x+ ω3’c 
E[Y|R=0,x,c]=π0+ π1x+ π3’c 
 
Set 2: 
E[Y|R=1,m,x,c]=α0 + α1x + α2m+ α3’c 
E[Y|R=0,m,x,c]=β0 + β1x + β2m + β3’c 
 
Set 3:  
E[Y|r,x,m,c] = 0 + 1r + 2x + 3m + 4rx + 5rm + 6’c   
E[Y|r,x,c] = 0 + 1r + 2x + 4rx + 6’c   
E[Y|r,c] = 0 + 1r + 6’c   
 
Suppose further that, for simplicity but not out of necessity, we assume no statistical interactions 
between race R and covariates C for the mean outcome log-wages i.e. ω3= π3 and α3= β3, such that 
the models of set 1 are equivalent to the second model in set 3, and the models in set 2 are 
equivalent to the first model in set 3. The models are equivalent in the sense that they allow for 
heterogeneous effects of childhood SES X and test scores M across race R. Note that all of our 
arguments assume no interactions between race and conditioning covariates C, but this is only done 
to simplify the proofs below. 
 
Goal of Proposition 1: equalize childhood SES across race given covariates i.e. standardization 
 
We can carry out an aggregate Oaxaca-Blinder decomposition to understand the extent to which 
differences in childhood SES X statistically explain the racial disparity within levels of gender and 
age C. With the models in set 1, the unexplained portion equals (ω0- π 0) + (ω1- π1)E[X|R=0,c], and 
the explained portion equals ω1{E[X|R=1,c] - E[X|R=0,c]}. Now, consider the linear models of set 3 
and assume that the effect of childhood SES X on log-wages is unconfounded given covariates 
gender and age C=c holds (assumption A1). Under Proposition 1, an intervention to set the 
distribution of childhood SES X among blacks according to its distribution among whites with 
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covariates C=c, we have that the residual disparity equals: 1 + 4 E[X|R=0,c], and the disparity 
reduction equals: (2 + 4) {E[X|R=1,c] - E[X|R=0,c]}. We show in the proofs below that the 
unexplained portion and the residual disparity are equal, and likewise the explained portion and 
the disparity reduced are equal. 
 
Goal of Proposition 2: equalize test scores across race given childhood SES and covariates i.e. 
mediation-analysis 
 
We can carry out an aggregate Oaxaca-Blinder decomposition to understand the extent to which 
differences in test scores M statistically explain the racial disparity within levels of childhood SES X, 
gender and age C. With the models in set 2, the unexplained portion equals: (α0-β0) + (α1-β1)x + 
(α2-β2)E[M|R=0,x,c], and the explained portion equals: α2{E[M|R=1,x,c] - E[M|R=0,x,c]}. Now, 
consider the linear models of set 3 and assume that the effect of test scores M on log-wages is 
unconfounded given childhood SES X and covariates gender and age C=c holds (i.e. assumption A2). 
Under Proposition 2, an intervention to set the distribution of test scores M among blacks according 
to its distribution among whites with childhood SES X=x and covariates gender and age C=c, we 
have that the residual disparity is equal to 1 + 4x + 5E[M|R=0,x,c], and the disparity reduction is 
equal to (3 + 5){E[M|R=1,x,c] - E[M|R=0,x,c]}. We show in the proofs below that the unexplained 
portion and the residual disparity are equal, and likewise the explained portion and the disparity 
reduced are equal. 
 
Goal of Proposition 3: equalize childhood SES and test scores across race given covariates 
 
We can carry out an aggregate Oaxaca-Blinder decomposition to understand the extent to which 
differences in childhood SES X and test scores M statistically explain the racial disparity within 
levels of covariates gender and age C. With the models in set 2, the unexplained portion equals: (α0-
β0) + (α1-β1)E[X|R=0,c] + (α2-β2)E[M|R=0,c], and the explained portion equals: α1{E[X|R=1,c] - 
E[X|R=0,c]} + α2{E[M|R=1,c] - E[M|R=0,c]}. Now, consider the linear models of set 3 and 
assumptions A1 and A2. Under Proposition 3, an intervention to set the distribution of childhood 
SES X and test scores M among blacks according to their distribution among whites with covariates 
C=c, we have that the residual disparity is equal to 1 + 4E[X|R=0,c] + 5E[M|R=0,c], and the 
disparity reduction is equal to (2 + 4) {E[X|R=1,c] - E[X|R=0,c]} + (3 + 5) {E[M|R=1,c] - 
E[M|R=0,c]}. We show in the proofs below that the unexplained portion and the residual disparity 
are equal, and likewise the explained portion and the disparity reduced are equal. 
 
Goal of Proposition 4: equalize test scores across race given covariates 
 
We can carry out a detailed Oaxaca-Blinder decomposition to understand the extent to which 
differences in childhood SES X, and also differences in test scores M, each statistically explain, 
independent of each other, the racial disparity within levels of gender and age C. With the models in 
set 2, the part of the unexplained portion due to racial differences in the association between 
childhood SES X and log-wages equals (α1-β1)E[X|R=0,c]; the part of the unexplained portion due to 
racial differences in the association between test scores M and log-wages equals (α2-β2)E[M|R=0,c]; 
the part of the explained portion due to racial differences in the distribution of childhood SES X 
(independent of racial differences in test scores M) equals α1{E[X|R=1,c] - E[X|R=0,c]}; the part of 
the explained portion due to racial differences in the distribution of test scores M (independent of 
racial differences in childhood SES X) equals α2{E[M|R=1,c] - E[M|R=0,c]}. Now, consider the linear 
models of set 3 and assumption A2. Under Proposition 4, an intervention to set the distribution of 
test scores M among blacks according to their distribution among whites with covariates gender 
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and age C=c, we have that the residual disparity is equal to 1 + 2{E[X|R=1,c]-E[X|R=0,c]} + 
4E[X|R=1,c]+ 5E[M|R=0,c], and the disparity reduction is equal to  (3 + 5) {E[M|R=1,c] - 
E[M|R=0,c]}. We show in the proofs below that the portion explained independently by test scores 
M and the disparity reduction are equal, and that the sum of the entire unexplained portion and the 
portion independently explain by childhood SES X equals the disparity reduced.  
 
A further note about causal interpretation under the detailed decomposition 
 
Note that the detailed decomposition interprets α1{E[X|R=1,c] - E[X|R=0,c]} as the portion of the 
disparity in log-wages statistically explained by racial differences in the mean of childhood SES X 
given covariates C gender and age (independent of racial differences in test scores M). However, 
this does not in general equal the disparity reduction under Proposition 1 i.e. what would occur 
under equalizing the distribution of childhood SES X across race given covariates C. Only when the 
effect of childhood SES X on log-wages is not mediated by test scores M, such that ω1=α1, would this 
interpretation apply. Otherwise it is not clear what the causal interpretation is for a detailed 
decomposition regarding childhood SES X in the models from set 2. Thus, the causal interpretation 
of a detailed decomposition depends on the causal structure among the explanatory variables Vj, 
which is related to the ‘path-dependence’ issue long noted by economists (Fortin 201114; Rothe 
20156). Here we suggest an approach for when separate causal interpretations for each explanatory 
variable in the Oaxaca-Blinder decomposition are desired. Considering the hypothesized causal 
structure carefully, one can carry out proposition 4 separately for each Vj of interest, including only 
additional variables that precede Vj that suffice to control for confounding of Vj. These set of results 
would answer how the disparity would change under alternative interventions to equalize each Vj 
marginally. See below ‘Relations to the literature on causal inference and the Oaxaca-Blinder 
decomposition’ for further considerations. 
 
A further note about the choice of referent group 
 
In our intervention of interest, X and/or M are assigned among blacks R=0 according to the 
distribution found among whites R=0 (the referent group). We could have alternatively chosen 
R=1 as the referent group i.e., an intervention to assign X and/or M among whites R=0 according to 
the distribution found among blacks R=1. We also could have chosen to assign X and/or M to each 
R=1 and R=0 according to the distribution found among the combined population of R=1 and R=0. 
Following the logic of our proofs, it can be shown that each choice can yield an Oaxaca-Blinder type 
decomposition. When outcomes for blacks fare worse than whites, the choice of R=0 as the referent 
would constitute a disparity reduction through improvement for blacks rather than declines for 
whites. We suspect that, of these considerations, this proposal is likely of most interest to policy-
makers in the United States examining solutions to eliminate racial disparities in the United States. 
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Overview of relations to the broader decomposition methods literature 

In this section, we place our contribution in the context of decomposition methods from the causal 

mediation literature from epidemiology and biostatistics, and the Oaxaca-Blinder decomposition 

literature from economics. Although our motivating example concerned decompositions of 

racial/ethnic differences, our methods could be adapted to examine differences across other social 

groupings e.g. across gender, sexual orientation, socioeconomic classes in childhood, or even groups 

that are defined later in life e.g. socioeconomic class in adulthood, health insurance status or type, 
or union group membership. Our manuscript thus presents a causal decomposition for any group-

outcome association. It does not pose counterfactuals for setting group status, which will often be 

non-manipulable as in the case of race/ethnicity (Holland 198618), but rather for setting a 

manipulable target variable that may occur concurrently with group status, or may be an effect of 

group status. Our results can appropriately account for variables affected by group status that 

confound the effect of the target on the outcome. For the remainder of our discussion we will focus 

on racial classification as the group defining variable. Herein, also, we focus our discussion on the 

assumption of conditional exchangeability (Hernan & Robins 201819) that was at the foundation of 

our contribution. Other assumptions such as consistency and positivity are also critically important 

to consider.19  

Implicit causal model 

For pedagogical purposes, let us for clarity define a causal graph in the sense of Robins 2011,20 

similar to the one provided in Figure 1. On this graph, we define the variables 𝑀 as test scores, 𝑋 as 
childhood SES, 𝑅 as race with 𝑟=black vs. 𝑟∗=white, 𝐻 as historical structures of racism, 𝐶 as 

covariates gender and age. Now, on this graph, 𝑌 is a direct descendant of 𝑅, 𝑋, 𝑀, 𝐶;  𝑀 is a direct 

descendant of 𝑅, 𝑋, 𝐶; 𝑋 is a direct descendant of 𝐻, 𝐶; and 𝑅 is direct descendant of 𝐻. We will 

sometimes make reference to the possible presence of a variable 𝐿 that when envoked is a direct 

descendant of 𝑅, 𝑋 and 𝐶 as well as a direct parent of 𝑀 and 𝑌. We also allow for a selection node 

denoting membership in the sample at baseline that is a direct descendant of 𝑅, 𝐶, 𝑋, 𝐻. This 

selection node 𝑆 is conditioned upon, representing collider-stratification21 induced associations 

between race, gender and age that arise (in the sample of non-institutionalized at baseline) through 

selective forces e.g. early life mortality and incarceration. 

There are at least two causal models that could be applied to provide interpretations for this graph. 

Suppose there are 𝐾 variables 𝑉, and that we index their temporal order with subscripts such that 

𝑉𝑘−1 always precedes 𝑉𝑘. Let 𝑃𝐴𝑘 denote the direct parents of 𝑉𝑘. We use an overbar 𝑉̅𝑘 to denote 

the vector of values of 𝑉 through node 𝑘 (𝑉1, … , 𝑉𝑘). We define the counterfactual 𝑉𝑘(𝑣𝑘−1) as the 

value that variable 𝑉𝑘 would obtain under an intervention to set 𝑉𝑘−1 to value 𝑣𝑘−1. The Minimal 

Causal Model (MCM) of Robins 201120 posits that the “one-step ahead” counterfactuals 𝑉𝑘(𝑣𝑘−1) 

exist; any variable  𝑉𝑘 is only a function of its past through the observed values of its direct parents 

i.e. 𝑉𝑘(𝑉̅𝑘−1) ≡ 𝑉𝑘(𝑝𝑎𝑘); the counterfactuals are recursively obtained; given the factual past of 𝑉𝑘 

i.e.,  𝑉̅𝑘−1 = 𝑣̅𝑘−1, the distribution of the one step ahead counterfactuals 𝑉𝑘+1(𝑣𝑘) and their 

propagation are independent of 𝑉𝑘 = 𝑣𝑘. The Non-Parametric Structural Equation Model (NPSEM) 

of Pearl 200921 realizes each variable as an unspecified, deterministic function of its parents’ values 

and an error term: 𝑌 = 𝑓(𝑟, 𝑚, 𝑥, 𝑐, 𝑒𝑦), 𝑀 = 𝑓(𝑟, 𝑥, 𝑐, 𝑒𝑚), 𝑋 = 𝑓(ℎ, 𝑐, 𝑒𝑥), 𝑅 = 𝑓(ℎ, 𝑒𝑟), 𝑆 =

𝑓(𝑟, 𝑐, 𝑥, ℎ, 𝑒𝑠), wherein the error terms 𝑒𝑣 are mutually independent. 𝐻 is left unspecified.  With 𝐿 

present, we have 𝑌 = 𝑓(𝑟, 𝑚, 𝑙, 𝑥, 𝑐, 𝑒𝑦), 𝑀 = 𝑓(𝑟, 𝑙, 𝑥, 𝑐, 𝑒𝑚), 𝐿 = 𝑓(𝑟, 𝑥, 𝑐, 𝑒𝑙), 𝑋 = 𝑓(ℎ, 𝑐, 𝑒ℎ), 𝑅 =
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𝑓(ℎ, 𝑒𝑟), 𝑆 = 𝑓(𝑟, 𝑐, 𝑥, ℎ, 𝑒𝑠). In this model counterfactuals are also recursively obtained, and any 

variable  𝑉𝑘 is independent of its past given the values (factual or otherwise) of its parents 𝑃𝐴𝑘. 

Under both models the distribution of 𝑉 can be written as 𝑓𝑣(𝑉) = ∏ 𝑓(𝑣𝑗|𝑝𝑎𝑗)𝐾
𝑗=1 . A key distinction 

is that the MCM is agnostic about the existence of cross-world counterfactuals e.g., 

𝑌(𝑋 = 1, 𝑀(𝑋 = 0)) whereas the NPSEM explicitly permits them. Our proposals are compatible 

with either interpretation of the causal graph. Our formal results, however, do not reference any 

particular graph. Thus, we provide this graph for intuition only. 

Let us consider now the substantive assumptions implied by the absence of arrows on this graph. 

For example, the graph assumes that race R does not affect childhood SES. In our conceptualization, 

racial classification could be considered to be determined at the time of conception as a function of 

the parents’ own racial classification and societal norms at the time of the survey. Racial 

classification is not a completely deterministic function of maternal or paternal race when we 

consider that children of mixed race were reported as such in the NLSY97 survey. Concerning SES 

during childhood, we assume that it would have been derived from maternal SES at that time. As a 

function of maternal SES, therefore, SES during childhood would not result from discrimination 

during childhood, before entry into the labor market or establishment of an occupation. Any wealth 

held during childhood is likely to be inherited and unlikely to be used for securing material 

resources for wellbeing during childhood. Moreover, both racial classification and parental SES 

during childhood are determined by the historical structuring of society’s wealth and opportunities 

enacted through slavery, Jim Crow, federal housing policy, and other structural forms of racism and 

discrimination.22–24. Thus, parental features are subsumed into the historical processes node. These 

arguments strongly weigh against a direct effect of race on childhood SES but do allow for an 

association between race and SES through historical processes. Historical processes are assumed to 

completely exert their effects on the outcome through race and socioeconomic status in early life 

i.e., no direct effect of historical processes with respect to race, childhood SES and test scores. This 

seems to be a reasonable assumption as SES is a primary source of social stratification in the U.S. in 

addition to race and gender. Also absent from the graph are any unmeasured common 

determinants of test scores M and the outcome Y. This assumption is more tenuous as there may be 

heterogeneity in school quality and family context even within the same socioeconomic bracket, 

age, gender, race, and ethnicity group and this heterogeneity may be predictive of the outcome. 

 

Relations to the causal mediation analysis literature 

The natural direct effect is defined as 𝐸[𝑌(𝑟, 𝑀(𝑟∗))|𝑐] − 𝐸[𝑌(𝑟∗, 𝑀(𝑟∗))|𝑐] and the natural indirect 

effect is defined as 𝐸[𝑌(𝑟, 𝑀(𝑟∗))|𝑐] − 𝐸[𝑌(𝑟, 𝑀(𝑟))|𝑐], and marginal effects can be obtained by 

standardizing each mean counterfactual to the same covariate distribution e.g., 𝑃[𝐶 = 𝑐].21,25,26 The 

counterfactual 𝑌(𝑟, 𝑀(𝑟)) represents the outcome that would be observed under an intervention to 

jointly set an individual’s (i) race to value 𝑟 (ii) mediator to value 𝑀(𝑟) it would obtain under an 

intervention to set that person’s race to value 𝑟. Holland 198627 argues that such counterfactuals 

are difficult to imagine and estimate for non-manipulable characteristics such as race. Holland’s 

concerns are amplified for natural direct/indirect effects because they rely on nested 

counterfactuals 𝑌(𝑟, 𝑀(𝑟∗)) which in this context seem difficult to ascertain. This counterfactual 

represents the outcome for a person who was assigned to be racially classified as black, but having 
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the test score that would have been observed for this person under an alternative life being 

classified as white. 

If, in spite of these challenges, one still wished to study causal mediation of the effects of assigning 

racial classification, one would need to the following conditions to hold: no race-outcome 

confounding 𝑌(𝑟, 𝑚) ∐𝑅|𝐶, no test score-outcome confounding 𝑌(𝑟, 𝑚) ∐𝑀|𝑅, 𝐶, no race-test score 

confounding 𝑀(𝑟) ∐𝑅|𝐶, and no time-dependent confounding i.e. no common cause 𝐿 of the test 

score-outcome relationship affected by race 𝑌(𝑟, 𝑚) ∐𝑀(𝑟∗)|𝐶. This last assumption is rather 
restrictive as it disallows the existence of other paths in which another mediator is a cause of the 

mediator of interest.28 If there were such a confounder 𝐿 of the 𝑀 − 𝑌 relationship such that it was 

affected by race, one would not be able to identify the natural direct/indirect effects even if 𝐿 were 

measured.  

To overcome the identification challenges posed by multiple mediators wherein one causes the 

other, methods have emerged that estimate natural direct/indirect effects with respect to 𝐿 and test 

scores 𝑀 jointly, under stricter no-confounding assumptions that apply to the set of 𝐿 and 𝑀 jointly:  

𝑌(𝑟, 𝑙, 𝑚) ∐𝑅|𝐶; 𝑌(𝑟, 𝑙, 𝑚) ∐𝐿, 𝑀|𝑅, 𝐶; 𝐿(𝑟), 𝑀(𝑟) ∐𝑅|𝐶; 𝑌(𝑟, 𝑙, 𝑚) ∐𝐿(𝑟∗), 𝑀(𝑟∗)|𝐶. Methods have 

also been introduced for path-specific effects, including, in this context, what would be the direct 

effect of race on 𝑌 not through 𝐿 or 𝑀 (𝑖. 𝑒. , 𝑅 → 𝑌), the effect of race through 𝐿 (i.e., the sum of 

paths 𝑅 → 𝐿 → 𝑀 → 𝑌 and 𝑅 → 𝐿 → 𝑌), and also the effect of race on 𝑌 through its direct effect on 

𝑀 (i.e., 𝑅 → 𝑀 → 𝑌).28–32 Several sets of assumptions have been proposed to non-parametrically 

identify these effects but they are much stronger than those necessary for mediation with a single 

or joint set of mediators. Moreover, the effect of 𝑅 on 𝑌 through 𝑀 (i.e., the sum of paths 𝑅 → 𝑀 → 𝑌 

and 𝑅 → 𝐿 → 𝑀 → 𝑌) are not identified without other restrictive assumptions such as the absence 

of unit-level interactions between 𝑅 and 𝐿,𝑀33 or the appropriateness of linear models for 𝐿, 𝑀, and 

𝑌.34,35 As with the methods for natural effects for a single mediator, these all concern 

counterfactuals for non-manipulable exposures. Some of the nested counterfactuals that define 

these effects are tremendously difficult to imagine for non-manipulable exposures e.g. 

𝐸[𝑌(𝑟, 𝐿(𝑟∗), 𝑀(𝑟, 𝐿(𝑟∗))|𝑐] as with a path-specific effect 𝑅 → 𝑀 → 𝑌.  

Alternative methods for mediation analysis, or rather effect decomposition, are based on so-called 

randomized interventional analogues of natural direct effects 𝐸[𝑌(𝑟, 𝐺𝑀(𝑟∗)|𝑐)] − 𝐸[𝑌(𝑟∗, 𝐺𝑀(𝑟∗)|𝑐)] 

and natural indirect effects 𝐸[𝑌(𝑟, 𝐺𝑀(𝑟)|𝑐)] − 𝐸[𝑌(𝑟, 𝐺𝑀(𝑟∗)|𝑐)] where 𝐺𝑀(𝑟∗)|𝑐 represents the value 

of the mediator drawn from its distribution among the population with 𝐶 = 𝑐 after assigning 𝑅 to 

value 𝑟∗.31 These analogues were originally developed in a non-counterfactual framework.36,37 

Later, a counterfactual framework was used to extend these analogues to the case where there 

exists another mediator 𝐿 that serves to confound 𝑀’s effect on 𝑌,31 where they were shown to be 

identified under weaker assumptions than natural direct effects: 𝑌(𝑟, 𝑚) ∐𝑅|𝐶,  𝑀(𝑟) ∐𝑅|𝐶, and  
𝑌(𝑟, 𝑚) ∐𝑀|𝑅, 𝐶, 𝐿. In this context, the intervention is again drawn from among those with 𝑅 set to 

𝑟∗ given 𝐶 = 𝑐, irrespective of 𝐿. Alternate randomized interventional analogues have been 

proposed in contexts analogous to time-dependent confounding by 𝐿 where the intervention 

depends on the value of 𝐿(𝑟∗) given 𝐶 = 𝑐 after assigning race i.e. 𝐺𝑀(𝑟∗)|𝑟∗,𝐿(𝑟∗),𝑐.38 These variants of 

randomized interventional analogues have been extended to the case of path-specific effects under 

time-varying exposures and time-varying mediators39,40 and path-specific effects under multiple 

mediators.41–43 Each of these methods and their identification assumptions, however, still rely on 

assumptions necessary to identify the effect of assigning racial classification, while also assigning 𝑀 

according to its counterfactual distribution given 𝐶 upon assigning race. 
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In the context where one is interested in decomposing a disparity, rather than the effect of racial 

classification, there is no need to satisfy the stringent identification assumptions posed by the 

aforementioned natural direct/indirect effects or their randomized interventional analogues. 

VanderWeele & Robinson 201444 essentially showed that progress can be made by defining a 

randomized intervention where the mediator 𝑀 (or a baseline variable 𝑋) is drawn from its 

observed distribution among the referent racial group given 𝐶, and posing counterfactuals 𝑌(𝑚) 

that only involve assignments for the mediator and not race, e.g., 𝐺𝑚|𝑟∗,𝑥,𝑐. This substantially 

weakens the identification assumptions e.g. 𝐸[𝑌(𝑚)|𝑚, 𝑟, 𝑐]  =  𝐸[𝑌(𝑚)|𝑟, 𝑐] in the case of a target 

mediating variable 𝑀 (similar assumptions are required for analogues based on a target baseline 

variable 𝑋). The identification results in VanderWeele & Robinson 201444 presume that there is no 

confounder 𝐿 of the 𝑀 − 𝑌 relationship affected by race. These results were referenced in 

VanderWeele & Tchetgen Tchetgen 201639 to motivate the primary interest of randomized 

interventional analogues for time-varying exposures and mediators in the disparity setting. 

However, they only developed identification results under an assignment for the exposure (e.g. race 

in this context) under time-dependent confounding by 𝐿. They did not go on to develop 

identification results for the disparity setting wherein no assignment is envisioned for race. 

A close inspection of estimators for the methods mentioned above will show that they equalize 

confounders across race 𝑅 by conditioning upon baseline variables 𝑋, 𝐶 or standardizing across 𝑋, 𝐶 

such that the disparity estimand pertains to a disparity where racial groups have either the same 

values for 𝑋, 𝐶 e.g., 𝐸[𝑌|𝑅 = 1, 𝑥, 𝑐]– 𝐸[𝑌|𝑅 = 0, 𝑥, 𝑐] or have the same distribution of 𝑋, 𝐶 i.e., 
∑ 𝐸[𝑌|𝑅 = 1, 𝑥, 𝑐]𝑃[𝑋 = 𝑥, 𝐶 = 𝑐]x,c – ∑ 𝐸[𝑌|𝑅 = 0|𝑥, 𝑐]𝑃[𝑋 = 𝑥, 𝐶 = 𝑐]𝑥,𝑐 . These methods ignore 

the fact that such measures of disparity where the effects of 𝑋 are removed may not be meaningful 

or of substantive interest. Even though investigators may not wish to explain such disparities, the 

use of estimators based on the aforementioned methods will force their hand because such 

methods were designed to use 𝑋 to resolve both race-outcome confounding and mediator-outcome 

confounding. This issue will become even more pervasive when considering disparities across 

statuses defined later in life such as health insurance status/type or union membership or 

geography. 

Our decomposition in proposition 4 allows investigators to decompose a disparity that only 

conditions on a subset of baseline variables 𝐶, while controlling for mediator-outcome confounding 

by all baseline variables 𝑋, 𝐶. It accomplishes this by posing a randomized intervention 𝐺𝑚|𝑟∗,𝑐 to 

set 𝑀 marginally with respect to the variable 𝑋 but conditionally with respect to 𝐶. The disparity 

reduction and residual disparity under such an intervention are identified under milder 

assumptions (e.g., 𝐸[𝑌(𝑚)|𝑚, 𝑥, 𝑟, 𝑐]  =  𝐸[𝑌(𝑚)|𝑥, 𝑟, 𝑐]) than those needed to identify the path-

specific race effects described earlier. Proposition 7 extends this decomposition to the case where 

there is a confounder 𝐿 of the 𝑀 − 𝑌 relationship that is affected by race; here the randomized 

intervention 𝐺𝑚|𝑟∗,𝑐 to set 𝑀 is marginal with respect to 𝐿 and 𝑋, under the assumption that 

𝐸[𝑌(𝑚)|𝑚, 𝑙, 𝑥, 𝑟, 𝑐]  =  𝐸[𝑌(𝑚)|𝑙, 𝑥, 𝑟, 𝑐]. Our decomposition in proposition 3 allows investigators to 

decompose a disparity that conditions on baseline variables 𝐶 under a joint randomized 

intervention on a baseline variable 𝑋 and a mediating variable 𝑀, assuming 𝐸[𝑌(𝑥, 𝑚)|𝑚, 𝑥, 𝑟, 𝑐]  =

𝐸[𝑌(𝑥, 𝑚)|𝑥, 𝑟, 𝑐] and 𝐸[𝑌(𝑥, 𝑚)|𝑟, 𝑐]  =  𝐸[𝑌(𝑥, 𝑚)|𝑥, 𝑟, 𝑐]. Proposition 6 extends this 

decomposition to the case where both 𝑋 and 𝑀 are intervened upon and there is a confounder 𝐿 of 

the 𝑀 − 𝑌 relationship that is either affected by 𝑅 or 𝑋, under an intervention that is marginal with 

respect to 𝐿. Identification requires that assuming the effects of 𝑋 and 𝑀 are unconfounded i.e., 

𝐸[𝑌(𝑥, 𝑚)|𝑚, 𝑙, 𝑥, 𝑟, 𝑐]  =  𝐸[𝑌(𝑥, 𝑚)|𝑙, 𝑥, 𝑟, 𝑐] and 𝐸[𝑌(𝑥, 𝑚)|𝑟, 𝑐]  =  𝐸[𝑌(𝑥, 𝑚)|𝑥, 𝑟, 𝑐]. 
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We also generalize the randomized intervention on 𝑀 in VanderWeele & Robinson 201444 that 

originally was used to decompose a disparity conditioned by 𝑋, 𝐶 in the absence of time-dependent 

confounding. In our Proposition 5 above, we provide identification results for such a conditional 

disparity in the presence of a time-dependent confounder 𝐿 of the 𝑀 − 𝑌 relationship that is 

affected by race.  The non-parametric formulae for this case is equivalent to the formulae provided 

for certain randomized interventional analogues in the setting of time-dependent confounding by 𝐿 

under an assignment for racial classification .31,39,43 However, in this context our estimand is 

identified under much weaker assumptions than those used to identify the decomposition of the 

total effect of race. Note that none of non-parametric formulae for our decompositions presented 

here pertain to those proposed by Zheng & Van Der Laan 2017.40 In the context of our structural 

model above with time-dependent confounding, those quantities pose an intervention on race, 

drawing 𝑀(𝑟∗) from a distribution conditional on the counterfactual variable 𝐿(𝑟∗). If conditional 

interventions along these lines were of interest, an alternative approach would be to consider the 

disparity residual/reduction under a randomized intervention on 𝑀 given observed 𝐿 and all 

variables in 𝑋, 𝐶, a randomized interventional analogue identified in Jackson 2018.45 

 

Relations to the literature on causal inference and the Oaxaca-Blinder decomposition 

In the literature we review here, much of the work concerning Oaxaca-Blinder 

decompositions6,8,9,11,12,14 pose a different causal model than the one we defined above. It typically 

poses unspecified non-parametric structural equations (generating functions) only for the outcome 

among each racial group 𝑌𝑟 = 𝑓𝑟(𝑚𝑟, 𝑥𝑟, 𝑐𝑟, 𝑒𝑦
𝑟) and 𝑌𝑟∗ = 𝑓𝑟∗(𝑚𝑟∗, 𝑥𝑟∗, 𝑐𝑟∗, 𝑒𝑦

𝑟∗). Given the 

explanatory variables (∙) a counterfactual is posed by replacing 𝑓𝑟(∙, 𝑒𝑦
𝑟) with 𝑓𝑟∗(∙, 𝑒𝑦

𝑟∗) under the 

assumption that 𝑒𝑦 ∐ 𝑅| (∙).14 This is interpreted as what would happen to a person with 𝑅 = 𝑟 had 

they had the generating function of a person in group 𝑅 = 𝑟∗. This counterfactual is identified on 

average if every structural determinant of 𝑌 that is associated with 𝑅 has been included in the 

decomposition, and 𝐸[𝑒𝑦|𝑅, (∙)] = 0. This assumption implies conditional exchangeability for race 

given the explanatory variables, i.e., 𝑌(𝑟) ∐𝑅 |(∙) for 𝑟, 𝑟∗. Thus, assuming a counterfactual 

generating function given a (hypothetically) sufficient set of explanatory variables is akin to 

hypothetically intervening to set R given fixed values for those explanatory variables. If in fact the 

explanatory variables contain all structural determinants of the outcome associated with race—

including descendants of race and other determinants associated with these descendants—then 

this assumption would hold.15 This is not the same counterfactual proposition for assigning race as 

is used with the natural direct/indirect effects,15 yet it is still difficult to imagine for health 

outcomes (as opposed to healthcare services or treatment) as their determinants are often not fully 

known or measured. This counterfactual proposition does seem plausible for certain experimental 

designs.16,17 

 

Aggregate Decomposition 

For the aggregate decomposition, in our context, the goal is to apportion an observed group 

difference 𝐸[𝑌|𝑅 = 𝑟] − 𝐸[𝑌|𝑅 = 𝑟∗] into that attributable to differences in the distribution of 

explanatory variables 𝑋, 𝑀 and 𝐶 (the explained portion) and that attributable to group differences 

in the effects of 𝑋,𝑀 and 𝐶 on the mean outcome 𝑌, as well as group differences in the mean 
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outcome at the reference levels of 𝑋, 𝑀, and 𝐶 (i.e. due to differences in the generating functions, 

the unexplained portion). Fortin 201114 considers several interpretations of the unexplained 

portion of the aggregate decomposition under conditional exchangeability 𝑌(𝑟) ∐𝑅|𝑋, 𝑀, 𝐶. Given 

this, the effect of assigning to blacks the generating function of whites has the causal interpretation 

as an effect of assigning black vs. white racial classification among blacks (average effect of 

treatment on the treated); the effect of assigning to whites the generating function of blacks has the 

causal interpretation as an effect of assigning black vs. white racial classification among whites 

(average effect of treatment on the untreated); what one would consider the effect of everyone 

having the generating function of blacks vs. that of whites has the causal interpretation as an effect 

of assigning black vs. white racial classification among both groups (average effect of treatment). 

These quantities will differ when the effects of 𝐶, 𝑋 or 𝑀 on 𝑌 vary by race. Nonetheless, as pointed 

out by Fortin 2011,14 interpreting any unexplained portion as an effect of race with counterfactuals 

may be problematic on several grounds: (i) race is non-manipulable; (ii) there may be differential 

selection into the sample by race based on unobsvervable characteristics (unmeasured selection-

bias46); and (iii) not all structural determinants of the outcome that are associated with race are 

observed (unmeasured confounding). Note that (iii) will arise if there are unmeasured common 

causes of race and the outcome (e.g. of 𝑅 and 𝑌), and also when there are unmeasured common 

causes of mediators and the outcome (e.g., of 𝑀 and 𝑌). This gets to the chief concern that the 

conditional exchangeability assumption rests on a post-treatment variable 𝑀 affected by race. 

Identification would be problematic if there were unmeasured confounding of 𝑀. Such unmeasured 
confounding would induce a selection-bias between race and the outcome through unmeasured 

determinants of the outcome associated with 𝑀.46 Even with no unmeasured confounding of 𝑀, 

what is identified is not a total effect of race but rather a direct effect of race with respect to 𝑀. 

Perhaps for this reason the unexplained portion is viewed as a pure measure of discrimination. 

Suppose now that in our causal structure race is unconfounded and that there are two mediators 𝐿 

and 𝑀 as in our extended example, for whom each of their individual effects on 𝑌 do not interact 

with one another to cause 𝑌 and that 𝐿 does not affect 𝑀.  Suppose also that the effect of race is 

unconfounded. Furthermore, suppose that the effects of 𝐿 and 𝑀 are unconfounded given race 

alone (and there is no interest in the explanatory value of baseline covariates 𝑋 and 𝐶). Huber 

201515 showed that, under this model, the explained/unexplained components from a standard, 

parametric Oaxaca-Blinder decomposition equal the natural indirect/direct effects47 from a 

parametric product-method estimator for multiple mediators. As pointed out by Huber 2015,15 

even with allowing for confounding by 𝑋, 𝐶 through conditional exchangeability assumptions,48 and 

relaxing the no-interaction assumptions through a weighting estimator, this equivalence between 

Oaxaca-Blinder decompositions and natural direct/indirect effects disallows the existence of any 

other mediators that confound those in view. If such a confounder did exist, it would not be possible 

to identify the natural direct/indirect effects even if it were measured. In many settings it may be 

difficult to interpret the results of aggregate Oaxaca-Blinder decompositions as natural indirect 

/direct effects. Moreover, this framing maintains causal inference with respect to race/group status. 

Let us return to our original graph where racial classification is a function of history with 𝑋 and 𝐶 

present (and possibly 𝐿). In our contribution, we introduced conditional forms of the aggregate 

Oaxaca-Blinder decomposition that consider a set of variables, and parse them into explanatory 

variables of interest and conditioning variables used to control for confounding of the explanatory 

variables, wherein causal interpretation is made with respect to intervene to set the distribution of 

the explanatory variables and not race. We showed that, under the conditional exchangeability 
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assumption 𝐸[𝑌(𝑚)|𝑟, 𝑥, 𝑐] = 𝐸[𝑌(𝑚)|𝑚, 𝑟, 𝑥, 𝑐], the explained portion of an Oaxaca-Blinder 

decomposition within levels of 𝑋 and 𝐶, with 𝑀 as the explanatory variable, is equivalent to the 

disparity reduction under a randomized intervention to set 𝑀 according to its distribution among 

whites 𝑅 = 0 given 𝑋 and 𝐶, the result in VanderWeele & Robinson 2014 (Proposition 2). The 

unexplained portion also has a causal interpretation as the residual disparity under that 

intervention. We also showed that, under the conditional exchangeability assumptions 
𝐸[𝑌(𝑥, 𝑚)|𝑟, 𝑥, 𝑐] = 𝐸[𝑌(𝑥, 𝑚)|𝑚, 𝑟, 𝑥, 𝑐] and 𝐸[𝑌(𝑥, 𝑚)|𝑥, 𝑟, 𝑐] = 𝐸[𝑌(𝑥, 𝑚)|𝑟, 𝑐] an Oaxaca-Blinder 

decomposition within levels of 𝐶, with 𝑋 and 𝑀 as explanatory variables, is equivalent to the 

disparity reduction under a randomized intervention to set 𝑋 and 𝑀 according to their distribution 

among whites 𝑅 = 0 given 𝐶 (Proposition 3). Again, the unexplained portion has a causal 

interpretation as the residual disparity under that intervention. We also generalized these results 

to the case where there is a time-dependent confounder 𝐿 tof the 𝑀 − 𝑌 relationship that is affected 

by 𝑅 and/or 𝑋 but 𝐿 itself is not of explanatory interest (Propositions 5 and 6). 

Some further remarks about the aggregate decomposition are in order. First, the causal 

interpretation we develop here for the aggregate decomposition with respect to the covariates will 

in most cases only be possible if one can establish conditional exchangeability for each explanatory 

variable given those that precede it. This may be difficult to accomplish when there are many 

explanatory variables; it may be best to pursue specific hypotheses for a subset of manipulable 

explanatory variables where conditional exchangeability can be satisfied. Our second remark is that 

in some cases, variables 𝐶 will be needed to achieve conditional exchangeability but an investigator 

may not be interested in a disparity that conditions upon some or all variables in 𝐶 (similar to our 

proposition 4 that does not condition on 𝑋). In this case, our results suggest that one needs to make 

use of a detailed decomposition that we consider at the end of the next section. 

 

Detailed Decomposition 

The goal of the detailed decomposition in the Oaxaca-Blinder decomposition literature is to 

apportion each of the explained and unexplained portions to each explanatory variable of interest, 

in our context, 𝑋 and 𝑀. Rothe 20156 considers a detailed decomposition of the explained portion 

for, in our context, racial differences in the distribution of the outcome 𝑌 using copula functions. 

The approach reduces to the standard detailed decomposition of the explained portion for racial 

differences in the mean outcome under linear models for the outcome. Under an assumption that is 

essentially equivalent to conditional exchangeability for each covariate given the others (e.g., 

𝑌(𝑥, 𝑚) ∐𝑥 |𝑟, 𝑚, 𝑐 and 𝑌(𝑥, 𝑚) ∐𝑚 |𝑟, 𝑥, 𝑐), each component of the explained portion is interpreted 

counterfactually: what difference in the outcome would one observe under an intervention to set 

the distribution of one or more covariates among blacks such that they follow the distribution 

among whites, while holding the distribution of other covariates fixed? The causal interpretation 

here is still tenuous for most variables. For example, consider an intervention on 𝑋 in a 

decomposition that involved 𝑋 and 𝑀. The exchangeability condition would be 𝑌(𝑥, 𝑚) ∐𝑥 |𝑟, 𝑚, 𝑐 

which requires identification using a post-treatment variable 𝑀. Such post-treatment variables may 

affect the outcome or be confounded with the outcome by unmeasured variables, where 

conditioning on them results in selection-bias.46 Moreover, even if confounders for the post-

treatment variable 𝑀 are assumed to be measured as in our example, such that no selection-bias 

would ensue, including 𝑀 in the model renders the policy interpretation for 𝑋 difficult because 𝑋 

affects 𝑀. The policy interpretation would pertain to an intervention that changes the distribution 
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of 𝑋 while disallowing any resulting changes in the distribution of 𝑀. When 𝑋 and 𝑀 are causally 

related, it is unclear what intervention on 𝑋 would not also affect 𝑀. 

We showed that, under the conditional exchangeability assumption 𝐸[𝑌(𝑚)|𝑟, 𝑥, 𝑐] =

𝐸[𝑌(𝑚)|𝑚, 𝑟, 𝑥, 𝑐], the explained portion of a detailed Oaxaca-Blinder decomposition within levels 

of 𝐶, corresponding to explanation by differences in the distribution of 𝑀, is equivalent to the 

disparity reduction under a randomized intervention to set 𝑀 according to its distribution among 

whites 𝑅 = 0 given 𝐶 (Proposition 4). We also generalized this result to the case where there is a 
time-dependent confounder 𝐿 of the 𝑀 − 𝑌 relationship that is affected by 𝑅 and/or 𝑋 (Proposition 

7). The portion corresponding to explanation by differences in the distribution of 𝑋 only has an 

analogous causal interpretation when the effect of 𝑋 on 𝑌 is not mediated by 𝑀, in which case it is 

equivalent to an intervention to set the distribution of 𝑋 according to its distribution among whites 

𝑅 = 0 given 𝐶 (proposition 1), provided conditional exchangeability 𝐸[𝑌(𝑥, 𝑚)|𝑟, 𝑐] =

𝐸[𝑌(𝑥, 𝑚)|𝑥, 𝑟, 𝑐] and 𝐸[𝑌(𝑥, 𝑚)|𝑚, 𝑥, 𝑟, 𝑐] = 𝐸[𝑌(𝑥, 𝑚)|𝑥, 𝑟, 𝑐]. Of course, if one were interested in 

proposition 1, one could just carry out an aggregate decomposition with just 𝑋 as an explanatory 

variable under the exchangeability condition 𝐸[𝑌(𝑥)|𝑟, 𝑐] = 𝐸[𝑌(𝑥)|𝑥, 𝑟, 𝑐] without any 

assumptions about the causal relationship between 𝑋 and 𝑀. 

Our results show that some results of a detailed decomposition have clear causal interpretations 

(and policy implications) while others do not. When conditional exchangeability only rests on pre-

treatment variables as in our approach, the component for the ultimate variable (𝑀 in our example) 

has a clear causal (and policy-relevant) interpretation. The component of the explained portion for 

the ultimate variable can be interpreted as the disparity reduced an intervention to equalize the 

distribution of the variable, marginally with respect to the preceding variables, but not to set race 𝑅. 

The remainder of the observed disparity can be interpreted as the residual disparity after such an 

intervention. Thus, our results for propositions 1 and 4 suggest if one is interested in the potential 

effects of intervening on each target for reducing disparities, one should carry out a separate 

Oaxaca-Blinder decomposition for each target of interest, only including as many other pre-target 

variables needed to satisfy conditional exchangeability for the target variable of interest.  

Our results also have implications for when investigators wish to use covariates to control for 

confounding but do not want to condition the disparity on some or all of them. It follows from our 

non-parametric results on propositions 4 that if 𝐶 were empty, and we had temporally ordered 

multivariate 𝑿 (𝑋1, . . . , 𝑋𝑘) and 𝑴 (𝑀1, . . . , 𝑀𝑘) such that 𝑋𝑘−1 preceded 𝑋𝑘 and likewise for 𝑀𝑘−1 

and 𝑀𝑘,  one could in fact make inferences about how a marginal disparity would change under an 

intervention to assign the joint distribution of 𝑴̅ among blacks to its distribution among whites, 

marginally with respect to 𝑿, provided that for each 𝑀𝑘 we had conditional exchangeability given 𝑿 

and 𝑴𝑘−1. One could also make use of a weaker exchangeability conditions involving possibly 

multivariate sets of time-dependent confounders 𝑳̅ (𝐿1, . . . , 𝐿𝑘) under extensions of our non-

parametric results for proposition 7. Overall, our results make clear that a careful consideration of 

temporality is paramount for carrying a causally meaningful detailed Oaxaca-Blinder 

decomposition. 
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Implications  

Our contributions lay the ground work for causal decompositions in a design and analysis 

framework that seeks to satisfy identifiability conditions for a refined set of potentially manipulable 

targets, regardless of whether they are non-mediating variables, mediating variables, or affected by 

other mediating variables. This allows for investigators to pursue causally meaningful Oxaca-

Blinder decompositions while defining a disparity, possibly conditional on baseline factors 𝑋 or 𝐶, 

but considering an intervention that may condition on all, some, or no baseline variables, or even 
variables 𝐿 affected by race. Thus, they allow for decompositions that can be tailored as needed to 

particular substantive settings. 
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Results for proportion of the disparity reduced 
 
Let D equal the total disparity measured on the difference scale E[Y|R=1,c]-E[Y|R=0,c] 
Let D* equal the residual disparity measured on the difference scale -E[Y|R=0,c] 
Let R equal the total disparity measured on the relative scale E[Y|R=1,c]/E[Y|R=0,c] 
Let R* equal the residual disparity measured on the relative scale /E[Y|R=0,c] 
 
Using additive disparity measures 
 
Proportion of disparity remaining = D*/D 
Proportion of disparity reduced = (D-D*)/D 
 
Using relative disparity measures  
 
Proportion of disparity remaining = (R*-1)/ (R-1) 
Proportion of disparity reduced = (R-R*) / (R-1) 
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Appendix Table 1. Results under parametric regression models for a continuous outcome Y (in the absence 
of time-dependent confounding). 
 Successive linear models for Y 

E[Y|r,x,m,c]  
= 0 + 1r + 2x + 3m + 4’c   
E[Y|r,x,c]  
= 0 + 1r + 2x + 4’c   
E[Y|r,c]  
= 0 + 1r + 4’c   
 

Linear models for Y, M, X 
E[Y|r,x,m,c]  
= 0 + 1r + 2x + 3m + 4’c   
E[M|r,x,c]  
= β0 + β1r + β2x + β3’c   
E[X|r,c]  
= α0 + α1r + α2’c   
 

Proposition 1   
   Residual disparitya 1 1 + β13 
   Disparity reductionb 1 - 1 α12 + α1β23 
Proposition 2   
   Residual disparitya 1    1 
   Disparity reductionb 1 - 1 β13 
Proposition 3   
   Residual disparitya 1 1 
   Disparity reductionb 1 - 1 α12 + β13 + α1β23  
Proposition 4   
   Residual disparitya 1 + (2/2)(1 - 1) 1 + α12 
   Disparity reductionb (1 - 1) + (1-2/2)( 1 - 1) β13 + α1β23 
a -E[Y|R=0,c]   
bE[Y|R=1,c]-  
where  equals the mean counterfactual outcome for group R=1 under the proposed intervention 
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Appendix Table 2. Results under parametric regression models for a rare binary outcome Y (in the 
absence of time-dependent confounding). 
 Successive logistic models for Y 

Logit P[Y|r,x,m,c]  
= 0 + 1r + 2x + 3m + 4’c   
Logit P[Y|r,x,c]  
= 0 + 1r + 2x + 4’c   
Logit P[Y|r,c]  
= 0 + 1r + 4’c   
 

Models for Y, M, X 
Logit P[Y|r,x,m,c]  
= 0 + 1r + 2x + 3m + 4’c   
E[M|r,x,c]  
= β0 + β1r + β2x + β3’c   
E[X|r,c]  
= α0 + α1r + α2’c   
 

Proposition 1   
   Residual disparitya exp{1} exp{1 + β13} 
   Disparity reductionb exp{1 - 1} exp{α12 + α1β23} 
Proposition 2   
   Residual disparitya exp{1}    exp{1} 
   Disparity reductionb exp{1 - 1} exp{β13} 
Proposition 3   
   Residual disparitya exp{1} exp{1} 
   Disparity reductionb exp{1 - 1} exp{α12 + β13 + α1β23}  
Proposition 4   
   Residual disparitya exp{1 + (2/2)(1 - 1)} exp{1 + α12} 
   Disparity reductionb exp{(1 - 1) + (1-2/2)( 1 - 1)} exp{β13 + α1β23} 
a -E[Y|R=0,c]   
bE[Y|R=1,c]-  
where  equals the mean counterfactual outcome for group R=1 under the proposed intervention 
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Results for successive linear models given measures of childhood characteristics, X1, X2, X3 
 
Consider the following models: 
E[Y|r,x1, x2,x3,m,c] = θ0 + θ1r + θ2x1 + θ3x2 + θ4x3 + θ5m +  θ6’c  
E[Y|r,x1, x2,x3,c] = δ0 + δ1r + δ2x1 + δ3x2 + δ4x3 + δ6’c 
E[Y|r,x1, x2,c] = 0 + 1r + 2x1 + 3x2 + 6’c   
E[Y|r, x1,c] = 0 + 1r + 2x1 + 6’c   
E[Y|r,c] = 0 + 1r + 6’c 
 
In Proposition 1 we have: 
The residual disparity is:  x1,x2,x3 - E[Y|R=0,c]  = δ1 
The disparity reduction is:  E[Y|R=1,c]-  x1,x2,x3  = 1 - δ1 
 
In Proposition 2 we have: 
The residual disparity is:  m|x1,x2,x3 - E[Y|R=0,x1, x2,x3,c]  = θ1 
The disparity reduction is:  E[Y|R=1,x1, x2,x3,c]-  m|x1,x2,x3  = δ1-θ1 
 
In Proposition 3 we have: 
The residual disparity is: x1,x2,x3,m -E[Y|R=0,c]  = 1 
The disparity reduction is:  E[Y|R=1,c]- x1,x2,x3,m  = 1 - 1 
 
In Proposition 4 we have: 
The residual disparity is: 
m- E[Y|R=0,c] 
= 1 
+ 4/δ4(1 - δ1) 
+ {3/3 + 4/δ4 (1- δ3/3)}(1 - 1) 
+ {2/2 + 3/3(1-2/2) + 4/δ4{(2 – δ2)/2 + (1- δ3/3)( 1-2/δ2)}}(1 - 1) 
The disparity reduction is: 
E[Y|R=0,c]- m 

= (δ1 - 1) 
+ (1-4/δ4)(1 - δ1) 
+ {(δ3- 3)/3 + (1 - 4/δ4)(1- δ3/3)}(1 - 1) 
+ {(δ2 - 2)/2 + (δ3 - 3)/3(1-2/2) + (1-4/δ4){(2 – δ2)/2 + (1- δ3/3)( 1-2/δ2)}}(1 - 1) 
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Appendix Table 3. Characteristics of males in the 1997 National Survey of American Youth 
Analytic Cohort, mean (standard deviation) 
 White 

(n=2,413) 
Black 

(n=1,169) 
Age 24.6 (1.5) 24.5 (1.5) 

   

Adult outcomes   

   Wage (dollars/hour) 21.3 (13.6) 17.3 (10.1) 

   Unemployeda 6.9 (2.5) 17.5 (3.8) 

   Incarceration, evera 8.2 (2.7) 16.4 (3.7) 

   

Educational Attainment   

   Armed Forces Qualifying Test (AFQT; z-score) 0.35 (0.98) -0.66 (0.78) 

   Total years education (years) 12.7 (1.8) 11.9 (1.4) 

   

Measures of childhood SES   

   Mother’s highest grade level 13.5 (2.5) 12.5 (2.1) 

   Parental net worth in childhood (dollars) $137,933 ($160,945) $35,994 ($67,260) 

   Household Income in childhood (dollars) $59,506 ($46,673) $30,262 ($29,051) 

   

Proportion missing (%)   

  Missing AFQTa 17.7 (38.2) 24.8 (43.2) 

  Missing total years of educationa 18.1 (38.5) 16.9 (37.5) 

  Missing mother’s highest grade levela 8.1 (27.3) 14.6 (35.4) 

  Missing parental net worth in childhooda 25.4 (43.6) 28.0 (44.9) 

  Missing household income in childhooda 22.7 (41.9) 31.1 (46.3) 
aBinary variable (1=yes, 0=no), scaled by 100. E.g., 6.9% of NLSY97 whites were unemployed in 2006. 
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Appendix Table 4. Estimates of residual disparities and disparity reductions in adult outcomes under hypothetical intervention strategies 
on childhood SES measures and/or Armed Forces Qualifying Test scores in the 1997 NLSY Cohort2 
 Proposition 1 Proposition 2 Proposition 3 Proposition 4 Re-analysis of Fryer 
 Intervene to 

equalize the 
distribution of 
childhood SES 
measures across 
race but not AFQT 
scores 

Intervene to 
equalize the 
distribution of AFQT 
scores across race 
within levels of 
childhood SES  

Intervene to 
equalize the 
distribution of AFQT 
scores and 
childhood SES 
measures across 
race 

Intervene to 
equalize the 
distribution of AFQT 
scores across race 
but not childhood 
SES measures 

Statistically equalize 
the distribution of 
AFQT scores across 
race without control 
for childhood SES 

Log wages      
   Initial disparity -0.19 (0.02) -0.14 (0.02) -0.19 (0.02) -0.19 (0.02) -0.19 (0.02) 
   Residual disparity -0.14 (0.02) -0.10 (0.03) -0.10 (0.03) -0.13 (0.03) -0.12 (0.03) 
   % reduction 25 34 51 32 38 
      
Incarceration      
   Initial disparity 2.12 (1.12) 1.65 (1.13) 2.12 (1.12) 2.12 (1.12) 2.12 (1.12) 
   Residual disparity 1.65 (1.13) 1.22 (1.13) 1.22 (1.13) 1.43 (1.13) 1.39 (1.13) 
   % reduction 54 34 18 36 32 
      
Unemployment      
   Initial disparity 2.86 (1.15) 2.39 (1.16) 2.86 (1.15) 2.86 (1.15) 2.86 (1.15) 
   Residual disparity 2.39 (1.16) 1.95 (1.17) 1.95 (1.17) 2.21 (1.17) 2.12 (1.16) 
   % reduction 26 31 49 35 40 
2The analytic sample size was 3279 for wages, 3294 for unemployment, and 4599 for incarceration. All models included mutually 
exclusive dummy variables for Hispanic ethnicity and mixed race. 
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Appendix Table 5. Estimates of residual disparities and disparity reductions in adult outcomes under hypothetical intervention strategies 
on childhood SES measures and/or total years of education in the 1997 NLSY Cohort2 
 Proposition 1 Proposition 2 Proposition 3 Proposition 4 Re-analysis of Fryer 
 Intervene to 

equalize the 
distribution of 
childhood SES 
measures across 
race but not total 
years of education 

Intervene to 
equalize the 
distribution of total 
years of education 
across race within 
levels of childhood 
SES  

Intervene to 
equalize the 
distribution of total 
years of education 
and childhood SES 
measures across 
race 

Intervene to 
equalize the 
distribution of total 
years of education 
across race but not 
childhood SES 
measures 

Statistically equalize 
the distribution of 
total years of 
education across 
race without control 
for childhood SES 

Log wages      
   Initial disparity -0.19 (0.02) -0.14 (0.02) -0.19 (0.02) -0.19 (0.02) -0.19 (0.02) 
   Residual disparity -0.14 (0.02) -0.13 (0.02) -0.13 (0.02) -0.16 (0.03) -0.15 (0.02) 
   % reduction 25 11 33 19 21 
      
Incarceration      
   Initial disparity 2.22 (1.12) 1.66 (1.14) 2.22 (1.12) 2.22 (1.12) 2.22 (1.12) 
   Residual disparity 1.66 (1.14) 1.50 (1.14) 1.50 (1.14) 1.74 (1.42) 1.69 (1.13) 
   % reduction 46 24 59 41 43 
      
Unemployment      
   Initial disparity 2.86 (1.13) 2.39 (1.15) 2.86 (1.13) 2.86 (1.13) 2.86 (1.13) 
   Residual disparity 2.39 (1.15) 2.32 (1.15) 2.32 (1.15) 2.64 (1.58) 2.53 (1.14) 
   % reduction 26 6 30 15 18 
2The analytic sample size was 3279 for wages, 3294 for unemployment, and 4599 for incarceration. All models included mutually 
exclusive dummy variables for Hispanic ethnicity and mixed race. 
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Proofs 
 
Non-parametric formulae in the absence of time-dependent confounding 
 
Our assumptions are: 
A1: The effect of X on the outcome Y is unconfounded given (R,C) 
A2: The effect of M on the outcome Y is unconfounded given (R,C,X) 
Along with consistency and positivity for X and M 
 
Formally these are: 
 
I. Conditional exchangeability: 
A1: E[Y(x)|R=r,c] = E[Y(x)|R=r,x,c] 
A1’: E[Y(x,m)|R=r,c] = E[Y(x,m)|R=r,x,c] 
A2: E[Y(m)|R=r,x,c] = E[Y(m)|R=r,x,m,c] 
A2’: E[Y(x,m)|R=r,x,c] = E[Y(x,m)|R=r,x,m,c] 
 
II. Consistency (for individual i):  
If Xi=xi then Yi(x)=Yi 
If Mi=m then Y i(m)=Yi 
If Xi=x and Mi=mi then Y i(x,m)=Yi  
 
III. Positivity (common support among defined population of interest): 
𝑓𝑋|𝑅,𝐶(𝑥|𝑟, 𝑐) > 0 for all 𝑅, 𝐶 𝑤ℎ𝑒𝑟𝑒 𝑃[𝑅 = 1, 𝐶 = 𝑐] > 0 and 𝑃[𝑅 = 0, 𝐶 = 𝑐] > 0 

𝑓𝑀|𝑅,𝑋,𝐶(𝑚|𝑟, 𝑥, 𝑐) > 0 for all 𝑅, 𝑋, 𝐶 𝑤ℎ𝑒𝑟𝑒 𝑃[𝑅 = 1, 𝑋 = 𝑥, 𝐶 = 𝑐] > 0  

and 𝑃[𝑅 = 0, 𝑋 = 𝑥, 𝐶 = 𝑐] > 0  
 
Recall Proposition 1 (VanderWeele and Robinson, 2014). The disparity that would remain if the 
childhood distribution of X for black persons (R=1) with covariates C=c were set equal to its 
distribution for white persons (R=0) with C=c would be:   
x -E[Y|R=0,c]   
and the amount the disparity is reduced would be:    
E[Y|R=1,c]- x  
where x = x E[Y|R=1,x,c]P(x|R=0,c). 
 
Proof of Proposition 1: Let Gx|c denote a random draw of the distribution of X among those with 
R=0,C=c i.e. from P(x|R=0,c). If the distribution of X for black persons (R=1) with covariates C=c 
were set equal to its distribution for white persons (R=0) the average outcome would be: 
E[Y(x=Gx|c)|R=1,c] 
= x E[Y(x)|R=1,c, Gx|c=x]P(Gx|c=x | R=1,c) 
= x E[Y(x)|R=1,c] P(x|R=0,c) by definition of Gx|c=x as random given C=c 
= x E[Y(x)|R=1,x,c] P(x|R=0,c) by (A1) 
= x E[Y|R=1,x,c] P(x|R=0,c). 
From this the result follows. 
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Recall Proposition 2 (VanderWeele and Robinson, 2014). The disparity that would remain if the 
distribution of M for black persons (R=1) with covariates C=c and X=x were set equal to its 
distribution for white persons (R=0) with C=c and X=x would be:    
m|x -E[Y|R=0,x,c]   
and the amount the disparity is reduced would be:    
E[Y|R=1,x,c]- m|x  
where m|x = m E[Y|R=1,x,m,c]P(m|R=0,x,c). 
 
Proof of Proposition 2. Let Gm|x,c denote a random draw of the distribution of M among those with 
R=0,C=c,X=x i.e. from P(m|R=0,x,c). If the distribution of M for black persons (R=1) with 
covariates C=c and X=x were set equal to its distribution for white persons (R=0) with covariates 
C=c and X=x would be:   
E[Y(m)=Gm|x,c)|R=1,x,c] 
= m E[Y(m)|R=1,x,c, Gm|x,c=m] P(Gm|x,c = m | R=1,x,c) 
= m E[Y(m)|R=1,x,c] P(m|R=0,x,c) by definition of Gm|x,c=m as random given C=c 
= m E[Y(m)|R=1,x,m,c] P(m|R=0,x,c) by (A2) 
= m E[Y|R=1,x,m,c] P(m|R=0,x,c) by (A2) 
From this the result follows. 
 
Recall Proposition 3. The disparity that would remain if the distribution of (X,M) for black persons 
(R=1) with covariates C=c were set equal to its distribution for white persons (R=0) with C=c 
would be:    
xm -E[Y|R=0,c]   
and the amount the disparity is reduced would be:    
E[Y|R=1,c]- xm  
where xm = x,m E[Y|R=1,x,m,c]P(m|R=0,x,c)P(x|R=0,c).   
 
Proof of Proposition 3. Let Gxm|c denote a random draw of the distribution of (X,M) among those 
with R=0,C=c i.e. from P(m,x|R=0,c). If the distribution of (X,M) for black persons (R=1) with 
covariates C=c were set equal to its distribution for white persons (R=0) with covariates C=c 
would the average outcome would be:   
E[Y((x,m)=Gx,m|c)|R=1,c] 
= x,m E[Y(x,m)|R=1,c, Gx,m|c =(x,m)] P(Gx,m|c =(x,m)| R=1,c) 
= x,m E[Y(x,m)|R=1,c] P(m,x|R=0,c) by definition of Gx,m|c=x,m as random given C=c 
= x,m E[Y(x,m)|R=1,x,c] P(m|R=0,x,c)P(x|R=0,c) by (A1’) 
= x,m E[Y(x,m)|R=1,x,m,c] P(m|R=0,x,c)P(x|R=0,c) by (A2’) 
= x,m E[Y|R=1,x,m,c] P(m|R=0,x,c)P(x|R=0,c). 
From this the result follows. 
  
Recall Proposition 4. The disparity that would remain if the distribution of M for black persons 
(R=1) with covariates C=c were set equal to its distribution for white persons (R=0) with C=c 
would be:    
m -E[Y|R=0,c]   
and the amount the disparity is reduced would be:    
E[Y|R=1,c]- m  
where m = x,m E[Y|R=1,x,m,c]P(m|R=0,c)P(x|R=1,c).           
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Proof of Proposition 4. Let Gm|c denote a random draw of the distribution of M among those with 
R=0,C=c i.e. from P(m|R=0,c).  If the distribution of M for black persons (R=1) with covariates C=c 
were set equal to its distribution for white persons (R=0) with covariates C=c the average outcome 
would be:    
E[Y(m)=Gm|c)|R=1,c] 
= m E[Y(m)|R=1,c, Gm|c=m] P(Gm|c = m | R=1,c) 
= m E[Y(m)|R=1,c] P(m|R=0,c) 
= x,m E[Y(m)|R=1,x,c] P(x|R=1,c) P(m|R=0,c) 
= x,m E[Y(m)|R=1,x,m,c] P(x|R=1,c) P(m|R=0,c) by (A2) 
= x,m E[Y|R=1,x,m,c] P(x|R=1,c) P(m|R=0,c). 
From this the result follows. 
 
Non-parametric formulae in the presence of time-dependent confounding 
  
Suppose now that there is a variable L, that may be affected by C,R,X and that affects both M and Y 
so that it is a confounder of the relationship between M and Y. 
 
We will assume: 
A1: The effect of X on the outcome Y is unconfounded given (R,C) 
A3: The effect of M on the outcome Y is unconfounded given (R,C,X,L) 
Along with positivity and consistency for X and M 
 
Formally these are: 
I. Conditional exchangeability: 
A1: E[Y(x)|R=r,c] = E[Y(x)|R=r,x,c] 
A3: E[Y(m)|R=r,x,c,l] = E[Y(m)|R=r,x,m,c,l] 
A3’: E[Y(x,m)|R=r,x,c,l] = E[Y(x,m)|R=r,x,m,c,l] 
 
II. Consistency (for individual i):  
If Xi=xi then Yix=Yi 
If Mi=m then Yim=Yi 
If Xi=x and Mi=mi then Yix,m=Yi  
 
III. Positivity (common support among defined population of interest): 
𝑓𝑋|𝑅,𝐶(𝑥|𝑟, 𝑐) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑅, 𝐶 𝑤ℎ𝑒𝑟𝑒 𝑃[𝑅 = 1, 𝐶 = 𝑐] > 0 and 𝑃[𝑅 = 0, 𝐶 = 𝑐] > 0 

𝑓𝑀|𝑅,𝐿,𝑋,𝐶(𝑚|𝑟, 𝑙, 𝑥, 𝑐) > 0 for all 𝑅, 𝐿, 𝑋, 𝐶 where 

𝑃[𝑅 = 1, 𝐿 = 𝑙, 𝑋 = 𝑥, 𝐶 = 𝑐] > 0 and 𝑃[𝑅 = 0, 𝐿 = 𝑙, 𝑋 = 𝑥, 𝐶 = 𝑐] > 0  
 
Recall Proposition 5. Under (A3), the disparity that would remain if the distribution of M for black 
persons (R=1) with X=x and covariates C=c were set equal to its distribution for white persons 
(R=0) with X=x and C=c would be:    
m|x -E[Y|R=0,x,c]   
and the amount the disparity is reduced would be:    
E[Y|R=1,x,c]- m|x  
where m|x = m,l|x E[Y|R=1,x,m,c,l]P(l|R=1,x,c)P(m|R=0,x,c).           
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Proof of Proposition 5. Let Gm|x,c denote a random draw of the distribution of M among those with 
R=0,X=x,C=c i.e. from P(m|R=0,x,c). If the distribution of M for black persons (R=1) with 
childhood SES X=x and covariates C=c were set equal to its distribution for white persons (R=0) 
with childhood SES X=x and covariates C=c would the average outcome would be:   
E[Y((m)=Gm|x,c)|R=1,x,c] 
= m E[Y(m)|R=1,x,c,Gm|x,c =(m)] P(Gm|x,c =(m)| R=1,x,c) 
= m E[Y(m)|R=1,x,c] P(m|R=0,x,c) by definition of Gm|x,c=x as random given C=c 
= m,l E[Y(m)|R=1,x,c,l] P(l|R=1,x,c)P(m|R=0,x,c)  
= m,l E[Y(m)|R=1,x,m,c,l] P(l|R=1,x,c) P(m|R=0,x,c) by (A3) 
= m,l E[Y|R=1,x,m,c,l] P(l|R=1,x,c)P(m|R=0,x,c) by consistency. 
From this the result follows. 
 
Recall Proposition 6. Under (A1’) and (A3’), the disparity that would remain if the distribution of 
(X,M) for black persons (R=1) with covariates C=c were set equal to its distribution for white 
persons (R=0) with C=c would be:    
xm -E[Y|R=0,c]   
and the amount the disparity is reduced would be:    
E[Y|R=1,c]- xm  
where xm = x,m,l E[Y|R=1,x,m,c,l]P(l|R=1,x,c)P(m|R=0,x,c)P(x|R=0,c).           
 
Proof of Proposition 6. Let Gxm|c denote a random draw of the distribution of (X,M) among those 
with R=0,C=c i.e. from P(m,x|R=0,c). If the distribution of (X,M) for black persons (R=1) with 
covariates C=c were set equal to its distribution for white persons (R=0) with covariates C=c 
would the average outcome would be:   
E[Y((x,m)=Gxm|c)|R=1,c] 
= x,m E[Y(x,m)|R=1,c, Gxm|c =(x,m)] P(Gxm|c =(x,m)| R=1,c) 
= x,m E[Y(x,m)|R=1,c] P(m,x|R=0,c) by definition of Gm|x,c=x,m as random given C=c 
= x,m E[Y(x,m)|R=1,x,c] P(m|R=0,x,c)P(x|R=0,c) by (A1’) 
= x,m,l E[Y(x,m)|R=1,x,c,l] P(l|R=1,x,c)P(m|R=0,x,c)P(x|R=0,c)  
= x,m,l E[Y(x,m)|R=1,x,m,c,l] P(l|R=1,x,c) P(m|R=0,x,c)P(x|R=0,c) by (A3’) 
= x,m,l E[Y|R=1,x,m,c,l] P(l|R=1,x,c)P(m|R=0,x,c)P(x|R=0,c) by consistency. 
From this the result follows. 
 
Recall Proposition 7. Under (A3), the disparity that would remain if the distribution of M for black 
persons (R=1) with covariates C=c were set equal to its distribution for white persons (R=0) with 
C=c would be:    
m -E[Y|R=0,c]   
and the amount the disparity is reduced would be:    
E[Y|R=1,c]- m  
where m = x,m,l E[Y|R=1,x,m,c,l]P(l|R=1,x,c)P(m|R=0,c)P(x|R=1,c).       
 
Proof of Proposition 7. Let Gm|c denote a random draw of the distribution of M among those with 
R=0,C=c i.e. from P(m|R=0,c).  If the distribution of M for black persons (R=1) with covariates C=c 
were set equal to its distribution for white persons (R=0) with covariates C=c the average outcome 
would be:    
E[Y(m)=Gm|c)|R=1,c] 
= m E[Y(m)|R=1,c, Gm|c=m] P(Gm|c = m | R=1,c) 
= m E[Y(m)|R=1,c] P(m|R=0,c) by definition of Gm|c=m as random given C=c 
= x,m E[Y(m)|R=1,x,c] P(x|R=1,c) P(m|R=0,c) 
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= x,m,l E[Y(m)|R=1,x,c,l] P(l|R=1,x,c)P(x|R=1,c) P(m|R=0,c) 
= x,m,l E[Y(m)|R=1,x,m,c,l] P(l|R=1,x,c)P(x|R=1,c) P(m|R=0,c) by (A3) 
= x,m,l E[Y|R=1,x,m,c,l] P(l|R=1,x,c) P(x|R=1,c) P(m|R=0,c) by consistency. 
 From this the result follows. 
 
 
 
Successive linear models for Y 
 
(under a single measure of X) 
 
Consider the following models: 
E[Y|r,x,m,c] = 0 + 1r + 2x + 3m + 4’c   
E[Y|r,x,c] = 0 + 1r + 2x + 4’c   
E[Y|r,c] = 0 + 1r + 4’c   
 
The results under the linear models for Propositions 1 and 2 were shown in VanderWeele and 
Robinson (2014).  
 
The results under linear models for Proposition 3, to set the distribution of childhood SES and test 
scores (X,M) among black persons to their distribution among white persons,  follow since:  
xm = x,m E[Y|R=1,x,m,c] P(m|R=0,x,c)P(x|R=0,c). 
= x,m (0 + 1 + 2x + 3m + 4’c) P(m|R=0,x,c)P(x|R=0,c) 
= 0 + 1 + 2 E[X|R=0,c] + 3E[M|R=0,c] + 4’c  
Similarly,  
E[Y|R=0,c] = E[Y|R=0,x,m,c] P(m|R=0,x,c)P(x|R=0,c). 
= 0 + 2 E[X|R=0,c] + 3E[M|R=0,c] + 4’c  
Thus, xm -E[Y|R=0,c]  = 1 
Moreover, 
E[Y|R=1,c]- xm  = {E[Y|R=1,c]- E[Y|R=0,c]} – {xm -E[Y|R=0,c]} = 1 - 1 
 
The results under linear models for Proposition 4, to set the distribution of test scores M among 
black persons to its distribution among white persons, follow since: 
 
m = x,m E[Y|R=1,x,m,c]P(m|R=0,c)P(x|R=1,c) 
=  x,m (0 + 1 + 2x + 3m + 4’c)P(m|R=0,c)P(x|R=1,c)     
=   0 + 1 + 2E[X|R=1,c] + 3E[M|R=0,c] + 4’c  
Similarly,  
E[Y|R=0,c] = x,m E[Y|R=0,x,m,c] P(m|R=0,x,c)P(x|R=0,c) 
= x,m (0 + 2x + 3m + 4’c)P(m|R=0,x,c)P(x|R=0,c) 
= 0 + 2 E[X|R=0,c] + 3E[M|R=0,c] + 4’c  
Thus, m -E[Y|R=0,c] = 1 + 2 {E[X|R=1,c] - E[X|R=0,c]} 
 
Note that: 
E[Y|R=1,c] - E[Y|R=0,c] = 1 
Also:  
E[Y|R=1,c] - E[Y|R=0,c] 
= x E[Y|R=1,x,c]P(x|R=1,c) - x E[Y|R=0,x,c]P(x|R=0,c) 
= x (0 + 1 + 2x + 4’c)P(x|R=1,c) - x (0 + 2x + 4’c)P(x|R=0,c) 
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= 1 + 2 {E[X|R=1,c] - E[X|R=0,c]} 
Thus: 1 = 1 + 2 {E[X|R=1,c] - E[X|R=0,c]}  
And so: {E[X|R=1,c] - E[X|R=0,c]} = (1 - 1)/ 2 
 
Therefore the remaining disparity is: 
m -E[Y|R=0,c]  
= 1 + 2 {E[X|R=1,c] - E[X|R=0,c]} 
= 1 + 2 (1 - 1)/ 2 
And the disparity reduction is:  
E[X|R=1,c] - m =  {E[X|R=1,c] - E[X|R=0,c]} – {m - E[X|R=0,c}  
= 1 + 2 {E[X|R=1,c] - E[X|R=0,c]} – 1 – 2 {E[X|R=1,c] - E[X|R=0,c]} 
= (1 - 1) + ( 2/2)( 1 - 1) 
 
Successive linear models for Y 
 
(under  multiple measures X i.e. X1,X2,X3) 
 
Suppose there were three potentially manipulable measures of early life characteristics X1, X2, X3 as 
used in the motivating example. It can be shown that the proofs and non-parametric results above 
regarding propositions 1-4 apply replacing X with X1,X2,X3 and x with x1,x2,x3. Below we provide 
results under successive linear models for outcome Y, however it can be shown that the results also 
apply on the logit scale under successive logistic models for a rare binary outcome Y. 
 
Consider the following linear models: 
E[Y|r,x1, x2,x3,m,c] = θ0 + θ1r + θ2x1 + θ3x2 + θ4x3 + θ5m + θ6’c  
E[Y|r,x1, x2,x3,c] = δ0 + δ1r + δ2x1 + δ3x2 + δ4x3 + δ6’c 
E[Y|r,x1, x2,c] = 0 + 1r + 2x1 + 3x2 + 6’c   
E[Y|r, x1,c] = 0 + 1r + 2x1 + 6’c   
E[Y|r,c] = 0 + 1r + 6’c   
 
The results under linear models for proposition 1, to set the distribution of childhood SES X among 
black persons to its distribution among white persons, follow since:  
 
 x1,x2,x3 =  x1,x2,x3 E[Y|R=1, x1, x2,x3,c]P(x1, x2,x3|R=0,c) 
=  x1,x2,x3 E[Y|R=1, x1,x2,x3,c]P(x3|R=0,x1,x2,c)P(x2|R=0,x1,c)P(x1|R=0,c) 
=  x1,x2,x3 (δ0 + δ1 + δ2x1 + δ3x2 + δ4x3 + δ6’c)P(x3|R=0,x1,x2,c)P(x2|R=0,x1,c)P(x1|R=0,c) 
= δ0 + δ1 + δ2E[X1|R=0,c] + δ3E[X2|R=0,c] + δ4E[X3|R=0,c] + δ6’c 
Similarly, 
E[Y|R=0,c] = x1,x2,x3 E[Y|R=0, x1, x2,x3,c]P(x1, x2,x3|R=0,c) 
=  x1,x2,x3 E[Y|R=0, x1,x2,x3,c]P(x3|R=0,x1,x2,c)P(x2|R=0,x1,c)P(x1|R=0,c) 
=  x1,x2,x3 (δ0 + δ2x1 + δ3x2 + δ4x3 + δ6’c)P(x3|R=0,x1,x2,c)P(x2|R=0,x1,c)P(x1|R=0,c) 
= δ0 + δ1 + δ2E[X1|R=0,c] + δ3E[X2|R=0,c] + δ4E[X3|R=0,c] + δ6’c 
Thus,  
 x1,x2,x3 - E[Y|R=0,c]  = δ1 
Moreover, 
E[Y|R=1,c]-  x1,x2,x3  = {E[Y|R=1,c]- E[Y|R=0,c]} – { x1,x2,x3 -E[Y|R=0,c]} = 1 - δ1 
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The results under linear models for proposition 2, to set the distribution of test scores M among 
black persons with childhood SES X=x to its distribution among white persons with childhood SES 
X=x, follow since: 
 
 m|x1,x2,x3 =  m E[Y|R=1,m,x1, x2,x3,c]P(m|R=0,x1, x2,x3,c) 
=  m (θ0 + θ1 + θ2x1 + θ3x2 + θ4x3 + θ5m + θ6’c)P(m|R=0,x1, x2,x3,c) 
= θ0 + θ1 + θ2x1 + θ3x2 + θ4x3+ θ2E[M|R=0, x1, x2,x3,c] + θ6’c 
Similarly, 
E[Y|R=0,x1, x2,x3,c] =  m E[Y|R=0,m,x1, x2,x3,c]P(m|R=0,x1, x2,x3,c) 
=  m (θ0 + θ2x1 + θ3x2 + θ4x3 + θ5m + θ6’c)P(m|R=0,x1, x2,x3,c) 
= θ0 + θ2x1 + θ3x2 + θ4x3+ θ2E[M|R=0, x1, x2,x3,c] + θ6’c 
Thus,  
 m|x1,x2,x3 - E[Y|R=0,x1, x2,x3,c]  = θ1 
Moreover, 
E[Y|R=1,x1, x2,x3,c]-E[Y|R=0,x1, x2,x3,c]=δ1 
And so, 
E[Y|R=1,x1, x2,x3,c]-  m|x1,x2,x3   
= {E[Y|R=1,x1, x2,x3,c]- E[Y|R=0,x1, x2,x3,c]} – { x1,x2,x3 -E[Y|R=0,c]} = δ1-θ1  
 
The results under linear models for proposition 3, to set the distribution of childhood SES and test 
scores (X,M) among black persons to its distribution among white persons, follow since: 
 
x1,x2,x3,m =  x1,x2,x3,m E[Y|R=1, x1, x2,x3,m,c]P(m|R=0,x1, x2,x3,c)P(x1, x2,x3|R=0,c) 
=  x1,x2,x3,m E[Y|R=1, x1, x2,x3,m,c]P(m|R=0,x1, x2,x3,c)P(x1, x2,x3|R=0,c) 
=  x1,x2,x3,m E[Y|R=1,m, x1,x2,x3,c] P(m|R=0,x1, x2,x3,c) P(x3|R=0,x1,x2,c) P(x2|R=0,x1,c) P(x1|R=0,c) 
=  x1,x2,x3,m (θ0 + θ2x1 + θ3x2 + θ4x3 + θ5m + θ6’c) P(m|R=0,x1, x2,x3,c) P(x3|R=0,x1,x2,c) 
P(x2|R=0,x1,c) P(x1|R=0,c) 
= 0 + 1 + 2 E[X1|R=0,c] + 3 E[X2|R=0,c] + 4 E[X3|R=0,c] + 5E[M|R=0,c] + 6’c  
Similarly,  
E[Y|R=0,c] =  x1,x2,x3,m E[Y|R=0, x1, x2,x3,m,c]P(m|R=0,x1, x2,x3,c)P(x1, x2,x3|R=0,c) 
= 0 + 2E[X1|R=0,c] + 3E[X2|R=0,c] + 4E[X3|R=0,c] + 5E[M|R=0,c] + 6’c  
Thus, x1,x2,x3,m -E[Y|R=0,c]  = 1 
Moreover, 
E[Y|R=1,c]- x1,x2,x3,m  = {E[Y|R=1,c]- E[Y|R=0,c]} – { x1,x2,x3,m -E[Y|R=0,c]} = 1 - 1 
 
The results follow under linear models for proposition 4, to set the distribution of test scores M 
among black persons to its distribution among white persons, follow since: 
 
m =  x1,x2,x3,m E[Y|R=1, x1, x2,x3,m,c]P(m|R=0,c)P(x1, x2,x3|R=1,c) 
=  x1,x2,x3,m E[Y|R=1, x1, x2,x3,m,c]P(m|R=0,c)P(x1, x2,x3|R=1,c) 
=  x1,x2,x3,m E[Y|R=1,m, x1,x2,x3,c] P(m|R=0,c) P(x3|R=1,x1,x2,c) P(x2|R=1,x1,c) P(x1|R=1,c) 
=  x1,x2,x3,m (θ0 + θ2x1 + θ3x2 + θ4x3 + θ5m + θ6’c) P(m|R=0,c) P(x3|R=1,x1,x2,c) P(x2|R=1,x1,c) 
P(x1|R=0,c) 
= 0 + 1 + 2 E[X1|R=1,c] + 3 E[X2|R=1,c] + 4 E[X3|R=1,c] + 5E[M|R=0,c] + 6’c  
Similarly,  
E[Y|R=0,c] =  x1,x2,x3,m E[Y|R=0, x1, x2,x3,m,c]P(m|R=0,x1, x2,x3,c)P(x1, x2,x3|R=0,c) 
= 0 + 2E[X1|R=0,c] + 3E[X2|R=0,c] + 4E[X3|R=0,c] + 5E[M|R=0,c] + 6’c  
And so 
m- E[Y|R=0,c] 
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= 1 + 2{E[X1|R=1,c]-E[X1|R=0,c]} + 3{E[X2|R=1,c]-E[X2|R=0,c]} + 4{E[X3|R=1,c]-E[X3|R=0,c]} 
 
Note that:  
E[Y|R=1,c]-E[Y|R=0,c]= 1 
Also: 
E[Y|R=1,c]-E[Y|R=0,c] 
=  x1,x2,x3 E[Y|R=1, x1, x2,x3,c]P(x1, x2,x3|R=1,c)-  x1,x2,x3 E[Y|R=0, x1, x2,x3,c]P(x1, x2,x3|R=0,c) 
=  x1,x2,x3 (δ0 + δ1 + δ2x1 + δ3x2 + δ4x3 + δ6’c) P(x3|R=1,x1,x2,c)P(x2|R=1,x1,c) P(x1|R=1,c) 
-  x1,x2,x3 (δ0 + δ2x1 + δ3x2 + δ4x3 + δ6’c)P(x3|R=0,x1,x2,c) P(x2|R=0,x1,c) P(x1|R=0,c) 
= δ1 + δ2{E[X1|R=1,c]-E[X1|R=0,c]} + δ3{E[X2|R=1,c]-E[X2|R=0,c]} + δ4{E[X3|R=1,c]-E[X3|R=0,c]} 
Also: 
E[Y|R=1,c]-E[Y|R=0,c] 
=  x1,x2 E[Y|R=1, x1, x2,c]P(x1, x2|R=1,c)-  x1,x2 E[Y|R=0, x1, x2,c]P(x1, x2|R=0,c) 
=  x1,x2 (0 + 1 + 2x1 + 3x2 + 6’c) P(x2|R=1,x1,c) P(x1|R=1,c) 
-  x1,x2 (0 + 2x1 + 3x2 + 6’c) P(x2|R=0,x1,c) P(x1|R=0,c) 
= 1 + 2{E[X1|R=1,c]-E[X1|R=0,c]} + 3{E[X2|R=1,c]-E[X2|R=0,c]}  
Also:  
E[Y|R=1,c]-E[Y|R=0,c] 
=  x1 E[Y|R=1, x1,c]P(x1|R=1,c)-  x1 E[Y|R=0, x1,c]P(x1|R=0,c)   
=  x1(0 + 1 + 2x1 + 6’c) P(x1|R=1,c) -  x1 (0 + 2x1 + 6’c) P(x1|R=0,c) 
= 1 + 2{E[X1|R=1,c]-E[X1|R=0,c]}   
Thus: 
E[X1|R=1,c]-E[X1|R=0,c]=(1 - 1)/2 
E[X2|R=1,c]-E[X2|R=0,c]={(1 - 1)+(1-2/2) (1 - 1)}/3 
E[X3|R=1,c]-E[X3|R=0,c]={(1 - δ1)+(2 – δ2)/2 (1 - 1)+(1- δ3/3){( 1 - 1)+(1-2/δ2)(1 - 
1)}}/δ4 
 
Thus, the residual disparity  
m- E[Y|R=0,c] 
= 1 + 2{E[X1|R=1,c]-E[X1|R=0,c]} + 3{E[X2|R=1,c]-E[X2|R=0,c]} + 4{E[X3|R=1,c]-E[X3|R=0,c]} 
= 1  

+ 2/2 (1 - 1)  
+ 3/3{(1 - 1)+ (1-2/2) (1 - 1)} 
+ 4/δ4{(1 - δ1)+(2 – δ2)/2 (1 - 1)+(1- δ3/3){( 1 - 1)+(1-2/δ2)(1 - 1)}} 
= 1 
+ 4/δ4(1 - δ1) 
+ {3/3 + 4/δ4 (1- δ3/3)}(1 - 1) 
+ {2/2 + 3/3(1-2/2) + 4/δ4{(2 – δ2)/2 + (1- δ3/3)( 1-2/δ2)}}(1 - 1) 
 
And the disparity reduced 
E[Y|R=0,c]- m 

={ E[Y|R=1,c]-E[Y|R=0,c]}-{m- E[Y|R=0,c]} 
= δ1 + δ2{E[X1|R=1,c]-E[X1|R=0,c]} + δ3{E[X2|R=1,c]-E[X2|R=0,c]} + δ4{E[X3|R=1,c]-E[X3|R=0,c]} 
-1 - 2{E[X1|R=1,c]-E[X1|R=0,c]} - 3{E[X2|R=1,c]-E[X2|R=0,c]} - 4{E[X3|R=1,c]-E[X3|R=0,c]} 
= (δ1 - 1) + (δ2-2){E[X1|R=1,c]-E[X1|R=0,c]} + (δ3-3){E[X2|R=1,c]-E[X2|R=0,c]}  
+ (δ4-4){E[X3|R=1,c]-E[X3|R=0,c]} 
= (δ1 - 1) 
+ (δ2 - 2)/2 (1 - 1)  
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+ (δ3 - 3)/3{(1 - 1)+ (1-2/2) (1 - 1)} 
+ (1-4/δ4){(1 - δ1)+(2 – δ2)/2 (1 - 1)+(1- δ3/3){( 1 - 1)+(1-2/δ2)(1 - 1)}} 
= (δ1 - 1) 
+ (1-4/δ4)(1 - δ1) 
+ {(δ3- 3)/3 + (1 - 4/δ4)(1- δ3/3)}(1 - 1) 
+ {(δ2 - 2)/2 + (δ3 - 3)/3(1-2/2) + (1-4/δ4){(2 – δ2)/2 + (1- δ3/3)( 1-2/δ2)}}(1 - 1) 
 
Linear models for Y, M and X 
 
Consider the following models: 
E[Y|r,x,m,c] = 0 + 1r + 2x + 3m + 4’c   
E[M|r,x,c] = β0 + β1r + β2x + β3’c   
E[X|r,c] = α0 + α1r + α2’c   
 
The results follow under these linear models for Proposition 4, to set the distribution of test scores 
M among black persons to its distribution among white persons, since: 
 
m = x,m E[Y|R=1,x,m,c]P(m|R=0,c)P(x|R=1,c) 
=  x,m (0 + 1 + 2x + 3m + 4’c)P(m|R=0,c)P(x|R=1,c)     
=   0 + 1 + 2E[X|R=1,c] + 3E[M|R=0,c] + 4’c  
 
We also have that:  
E[Y|R=1,c] = x,m E[Y|R=1,x,m,c] P(m|R=1,x,c)P(x|R=1,c). 
= x,m (0 + 1 + 2x + 3m + 4’c)P(m|R=1,x,c)P(x|R=1,c). 
= 0 + 1 + 2 E[X|R=1,c] + 3E[M|R=1,c] + 4’c  
Thus, E[Y|R=1,c]- m = 3 {E[M|R=1,c] - E[M|R=0,c]} 
 
Also:  
E[Y|R=0,c] = x,m E[Y|R=0,x,m,c] P(m|R=0,x,c)P(x|R=0,c). 
= x,m (0 + 2x + 3m + 4’c)P(m|R=0,x,c)P(x|R=0,c). 
= 0 + 2 E[X|R=0,c] + 3E[M|R=0,c] + 4’c  
Thus, m - E[Y|R=0,c] = 1 + 2 {E[X|R=1,c] - E[X|R=0,c]} 
 
Note that: 
E[M|R=1,c] - E[M|R=0,c] 
= x E[M|R=1,x,c]P(x|R=1,c) - x E[M|R=0,x,c]P(x|R=0,c) 
= x (β0 + β1 + β2x + β3’c)P(x|R=1,c) - x (β0 + β2x + β3’c)P(x|R=0,c) 
= β1 + β2 {E[X|R=1,c] - E[X|R=0,c]}  
Also: 
E[X|R=1,c] - E[X|R=0,c] = α1 
 
Thus, the remaining disparity is: 
m - E[Y|R=0,c] = 1 + 2 α1 
 
And the disparity reduction is: 
E[Y|R=1,c]- m = 3 {β1 + β2 α1} 
 
Successive logistic models for a rare binary outcome Y 
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Consider the following models: 
Logit P[Y|r,x,m,c] = 0 + 1r + 2x + 3m + 4’c   
Logit P[Y|r,x,c] = 0 + 1r + 2x + 4’c   
Logit P[Y|r,c] = 0 + 1r + 4’c   
 
The results under logistic models for Proposition 4, to set the distribution of test scores M among 
black persons to its distribution among white persons, follow since: 
 
Under the assumption Logit P[Y|⋅] ≈ log P[Y|⋅],  
Logit m  
≈ Log {x,m P[Y|R=1,x,m,c] P(m|R=0,x,c)P(x|R=1,c)} 
= Log {x,m exp(0 + 1 + 2x + 3m + 4’c)P(m|R=0,x,c)P(x|R=1,c)} 
= Log {exp(0 + 1 + 4’c) E[exp(2X)|R=1,c] E[exp(3M)|R=0,c]} 
= 0 + 1 + 4’c + log E[exp(2X)|R=1,c] + log E[exp(3M)|R=0,c]} 
 
Similarly Logit E[Y|R=1,c]  
≈ Log {x,m P[Y|R=1,x,m,c] P(m|R=1,x,c)P(x|R=1,c)} 
= Log {x,m exp(0 + 1 + 2x + 3m + 4’c)P(m|R=1,x,c)P(x|R=1,c)} 
= Log {exp(0 + 1 + 4’c) E[exp(2X)|R=1,c] E[exp(3M)|R=1,c]} 
= 0 + 1 + 4’c + log E[exp(2X)|R=1,c] + log E[exp(3M)|R=1,c] 
 
Similarly Logit E[Y|R=0,c]  
≈ Log {x,m P[Y|R=0,x,m,c] P(m|R=0,x,c)P(x|R=0,c)} 
= Log {x,m exp(0 + 2x + 3m + 4’c)P(m|R=0,x,c)P(x|R=0,c)} 
= Log {exp(0 + 4’c) E[exp(2X)|R=0,c] E[exp(3M)|R=0,c]} 
= 0 + 4’c + log E[exp(2X)|R=0,c] + log E[exp(3M)|R=0,c] 
 
Note that:  
Logit P[Y|R=1,c]-Logit P[Y|R=0,c] 
≈ Log P[Y|R=1,c]-Log P[Y|R=0,c] 
= 1 
 
Also note that  
Logit P[Y|R=1,c]-Logit P[Y|R=0,c] 
≈ Log {x P[Y|R=1,x,c] P(x|R=1,c)} - Log {x P[Y|R=0,x,c] P(x|R=0,c)} 
= Log {x exp(0 + 1 + 2x + 4’c) P(x|R=1,c)} - Log {x exp(0 + 2x + 4’c) P(x|R=0,c)} 
= Log {exp(0 + 1 + 4’c)E[exp(2X)|R=1,c]} - Log {exp(0 + 4’c)E[exp(2X)|R=1,c]} 
= 1 + Log E[exp(2X)|R=1,c] – Log E[exp(2X)|R=0,c] 
= 1 + 2 E[X|R=1,c] + ½(2)2σX2 - 2 E[X|R=0,c] - ½(2)2σX2 

= 1 + 2 {E[X|R=1,c] - E[X|R=0,c]} 
And so 
1=1 + 2 {E[X|R=1,c] - E[X|R=0,c]} 
{E[X|R=1,c] - E[X|R=0,c]}= (1-1)/2 
 
Thus, the remaining disparity is equal to 
Logit m -Logit E[Y|R=0] 
= 1 + log E[exp(2X)|R=1,c]-log E[exp(2X)|R=0,c] 
= 1 + log {exp(2E[X|R=1,c]+ ½(2)2 σX2)} - log {exp(2E[X|R=0,c]+ ½(2)2 σX2)} 
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= 1 + 2 { E[X|R=1,c]-E[X|R=0,c]} 
= 1 + 2(1-1)/2 
 
And the disparity reduction is equal to 
Logit E[Y|R=1]- Logit m 

= (Logit E[Y|R=1]- Logit E[Y|R=0])-(Logit E[Y|R=1]- Logit xm) 
= 1 + 2 {E[X|R=1,c] - E[X|R=0,c]} - 1 - 2 { E[X|R=1,c]-E[X|R=0,c]} 
= (1-1)+( 1-2/2)(1-1) 
 
Logistic model for a rare binary outcome Y with linear models for M and X  
 
Consider the following models: 
Logit P[Y|r,x,m,c] = 0 + 1r + 2x + 3m + 4’c   
E[M|r,x,c] = β0 + β1r + β2x + β4’c   
E[X|r,c] = α0 + α1r + α4’c   
 
Assume the outcome is rare and the error term in the model for E[X|r,c] is normally distributed and 
constant variance σx, and the error term in the model for E[M|r,x,c] is normally distributed with 
constant variance σM 
 
The results under these models for Proposition 4, to set the distribution of test scores M among 
black persons to its distribution among white persons, follow since: 
 
Under the assumption Logit P[Y|⋅] ≈ log P[Y|⋅], we have that Logit xm  
≈ Log {x,m P[Y|R=1,x,m,c] P(m|R=0,x,c)P(x|R=1,c)} 
= Log {x,m exp(0 + 1 + 2x + 3m + 4’c)P(m|R=0,x,c)P(x|R=1,c)} 
= Log {exp(0 + 1 + 4’c) E[exp(2X)|R=1,c] E[exp(3M)|R=0,c]} 
= Log {exp(0 + 1 + 4’c) exp((2)( α0 + α1 + α4’c) + ½(2)2 σx2) E[exp(3M)|R=0,c]}  
= Log {exp(0 + 1 + 4’c) exp((2)( α0 + α1 + α4’c) + ½(2)2 σx2) exp((3)E[M|R=0,c] + ½(3)2 
σM2)} 
= 0 + 1 + 4’c + 2( α0 + α1 + α4’c) + ½(2)2 σx2 + (3)E[M|R=0,c] + ½(2)2 σM2 
 
Similarly Logit E[Y|R=1,c]  
≈ Log {x,m P[Y|R=1,x,m,c] P(m|R=1,x,c)P(x|R=1,c)} 
= Log {x,m exp(0 + 1 + 2x + 3m + 4’c)P(m|R=1,x,c)P(x|R=1,c)} 
= Log {exp(0 + 1 + 4’c) E[exp(2X)|R=1,c] E[exp(3M)|R=1,c]} 
= Log {exp(0 + 1 + 4’c) exp((2)( α0 + α1 + α4’c) + ½(2)2 σx2) exp((3)E[M|R=1,c] + ½(3)2 
σM2)} 
= 0 + 1 + 4’c + 2(α0 + α1 + α4’c) + ½(2)2 σx

2 + (3)E[M|R=1,c] + ½(2)2 σM
2 

 
Similarly Logit E[Y|R=0,c]  
≈ Log {x,m P[Y|R=0,x,m,c] P(m|R=0,x,c)P(x|R=0,c)} 
= Log {x,m exp(0 + 2x + 3m + 4’c)P(m|R=0,x,c)P(x|R=0,c)} 
= Log {exp(0 + 4’c) E[exp(2X)|R=0,c] E[exp(3M)|R=0,c]} 
= Log {exp(0 + 4’c) exp((2)( α0 + α4’c) + ½(2)2 σx

2) exp((3)E[M|R=0,c] + ½(3)2 σM
2)} 

= 0 + 4’c + 2(α0 + α4’c) + ½(2)2 σx
2 + (3)E[M|R=0,c] + ½(2)2 σM

2 
 
Note that logit E[M|R=1,c] – logit E[M|R=0,c] ≈ 
= x E[M|R=1,x,c]P(x|R=1,c) - x E[M|R=0,x,c]P(x|R=0,c) 
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 = x (β0 + β1 + β2x + β3’c)P(x|R=1,c) - x (β0 + β2x + β3’c)P(x|R=0,c) 
= β1 + β2 {E[X|R=1,c] - E[X|R=0,c]} 
=  β1 + β2α1 
 
Thus the disparity reduction E[Y|R=1,c]/xm is 
= exp(Logit E[Y|R=1,c] - Logit xm)  
≈ exp(Log E[Y|R=1,c] - Log xm) 
= exp(3{E[M|R=1,c]-E[M|R=0,c]}) 
= exp(3{β1 + β2α1}) 
 
And the remaining disparity xm/E[Y|R=0,c] is 
= exp(Logit xm - Logit E[Y|R=0,c])  
≈ exp(Log xm - Log E[Y|R=0,c]) 
= exp(1 + 2α1) 
 
Oaxaca-Blinder decomposition 
 
Consider the two sets of race-stratified linear models that each can be used to carry out different 
Oaxaca-Blinder decompositions: 
 
Set 1: 
E[Y|R=1,x,c]=ω0 + ω1x+ ω3’c 
E[Y|R=0,x,c]=π0+ π1x+ π3’c 
 
To simplify the formulas we derive, we assume that ω3=π3. We could allow for ω3≠π3 but this is does 
not materially affect our proof that propositions 1-4 can be expressed as causal implementations of 
the Oaxaca-Blinder decomposition. 
 
Set 2: 
E[Y|R=1,m,x,c]=α0 + α1x + α2m+ α3’c 
E[Y|R=0,m,x,c]=β0 + β1x + β2m + β3’c 
 
Consider also successive linear models for Y, this time with interaction terms between R and X and 
also R and M. (These models could allow for interactions between R and C, and while this would 
slightly change some of the formulas we derive, this additional complexity does not affect the ability 
to express propositions 1-4 as causal implementations of the Oaxaca-Blinder decomposition). 
 
Set 3: 
E[Y|r,x,m,c] = 0 + 1r + 2x + 3m + 4rx + 5rm + 6’c   
E[Y|r,x,c] = 0 + 1r + 2x + 4rx + 6’c   
E[Y|r,c] = 0 + 1r + 6’c   
 
Again, we could incorporate interaction terms between race and the covariates C in these models, 
but again, this additional complexity would not affect the ability to express propositions 1-4 as causal 
implementations of the Oaxaca-Blinder decomposition. 
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For Proposition 1 (i.e. equalize the distribution of childhood SES X across race R), the results under 
an Oaxaca-Blinder decomposition with models from set 1 equate to results using linear models from 
set 3 since, under assumption A1:  
 
x = x E[Y|R=1,x,c]P(x|R=0,c) 
= x (0 + 1 + 2x + 4x + 6’c)P(x|R=0,c) 
= 0 + 1 + (2 + 4) E[X|R=0,c] + 6’c  
Similarly,  
E[Y|R=0,c] = E[Y|R=0,x,c]P(x|R=0,c) 
= x (0 + 2x + 6’c)P(x|R=0,c) 
= 0 + 2 E[X|R=0,c] + 6’c 
Thus, x -E[Y|R=0,c]  = 1 + 4 E[X|R=0,c] 
Also, 
E[Y|R=1,c] = E[Y|R=1,x,m,c]P(x|R=1,c) 
= x (0 + 1r + 2x + 4x + 6’c)P(x|R=0,c) 
= (0 + 1 + (2 + 4) E[X|R=1,c] + 6’c  
Thus, E[Y|R=1,c]- x = (2 + 4) {E[X|R=1,c] - E[X|R=0,c]}  
 
Note that 
E[Y|R=1,c]= x E[Y|R=1,x,c]P(x|R=1,c) 
=x (ω0 + ω1x+ ω3’c) P(x|R=1,c) 
= ω0 + ω1E[X|R=1,c] + ω3’c 
Similarly, 
E[Y|R=0,c]= x E[Y|R=0,x,c]P(x|R=0,c) 
=x (π0 + π1x+ π3’c)P(x|R=0,c) 
= π0 + π1E[X|R=0,c] + π3’c 
 
Thus, 
E[Y|R=1,c]-E[Y|R=0,c] 
= (ω0 - π0) + ω1E[X|R=1,c]- π1E[X|R=0,c] 
= (ω0 - π0) + ω1E[X|R=1,c]- π1E[X|R=0,c] + ω1E[X|R=0,c] - ω1E[X|R=0,c] 
= (ω0 - π0) + (ω1- π1)E[X|R=0,c] + ω1{E[X|R=1,c]-E[X|R=0,c]}  
 
In an Oaxaca-Blinder decomposition, the terms (ω0- π0) and (ω1- π1)E[X|R=0,c] could be referred 
to as the “unexplained portion” and the term ω1{E[X|R=1,c]-E[X|R=0,c]} could be referred to as the 
“explained” portion, whose sum equals the total disparity E[Y|R=1,c]-E[Y|R=0,c].  
 
Note that by definition, (ω0- π0)=1, π1 = 2, and (ω1- π1)= 4. 
 
Thus,  
x -E[Y|R=0,c]  
= 1 + 4 E[X|R=0,c] 
= (ω0- π 0) + (ω1- π1)E[X|R=0,c] 
Also, 
E[Y|R=1,c]- x  
= (2 + 4){E[X|R=1,c] - E[X|R=0,c]} 
= ω1{E[X|R=1,c] - E[X|R=0,c]} 
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Thus, under assumption A1, these quantities can be interpreted as the residual disparity and 
disparity reduction under an intervention to equalize X alone (proposition 1). Note that if 4=0 
such that ω1=π1 we obtain the results under linear models in the main text. 
 
For Proposition 2 (i.e. equalize the distribution of test scores M across race R within levels of 
childhood SES X), the results under an Oaxaca-Blinder decomposition with models from set 2 
equate to results using linear models from set 3 since under assumption A2: 
 
m|x = m E[Y|R=1,x,m,c]P(m|R=0,x,c) 
= x (0 + 1 + 2x + 3m + 4x + 5m + 6’c)P(m|R=0,x,c) 
= 0 + 1 + (2 + 4) x + (3 + 5) E[M|R=0,x,c] + 6’c  
Similarly,  
E[Y|R=0,x,c] = m E[Y|R=0,x,m,c]P(m|R=0,x,c) 
= m (0 + 2x + 3m + 6’c)P(m|R=0,x,c) 
= 0 + 2x + 5E[M|R=0,x,c] + 6’c  
Thus, m|x -E[Y|R=0,c]  = 1 + 4x + 5E[M|R=0,x,c] 
Also, 
E[Y|R=1,x,c] = E[Y|R=1,x,m,c]P(x|R=1,c) 
= m (0 + 1 + 2x + 3m + 4x + 5m + 6’c)P(m|R=1,x,c) 
= 0 + 1 + (2 + 4) x + (3 + 5) E[M|R=1,x,c] + 6’c  
Thus, E[Y|R=1,x,c]-  m|x = (3 + 5){E[M|R=1,x,c] - E[M|R=0,x,c]} 
 
Note that 
E[Y|R=1,x,c]= m E[Y|R=1,m,x,c]P(m|R=1,x,c) 
=m (α0 + α1x + α2m+ α3’c) P(m|R=1,x,c) 
= α0 + α1x + α2E[M|R=1,x,c] + α3’c 
Similarly, 
E[Y|R=0,x,c]= m E[Y|R=0,m,x,c]P(m|R=0,x,c) 
=m (β0 + β1x + β2m + β3’c)P(m|R=0,x,c) 
= β0 + β1x + β2E[M|R=0,x,c]+ β3’c 
Thus, 
E[Y|R=1,x,c]-E[Y|R=0,x,c] 
= (α0-β0) + α1x - β1x + α2E[M|R=1,x,c]- β2E[M|R=0,x,c] 
= (α0-β0) + α1x - β1x + α2E[M|R=1,x,c]- β2E[M|R=0,x,c] + α2E[M|R=0,x,c] – α2E[M|R=0,x,c] 
= (α0-β0) + (α1-β1)x + (α2-β2)E[M|R=0,x,c] + α2{E[M|R=1,x,c]-E[X|R=0,x,c]} 
 
In an Oaxaca-Blinder decomposition, the terms (α0-β0) and (α1-β1)x and (α2-β2)E[M|R=0,x,c] could 
be referred to as the “unexplained portion given X.” The term α2{E[M|R=1,x,c]-E[X|R=0,x,c]} could 
be referred to as the “explained portion given X,” whose sum equals the total disparity within levels 
of X i.e. E[Y|R=1,x,c]-E[Y|R=0,x,c].  
 
Note that by definition (α0-β0)=1, (α1-β1)=4, β2=3, and (α2-β2) = 5. 
 
Thus, 
m|x -E[Y|R=0,c]   
= 1 + 4x + 5E[M|R=0,x,c] 
= (α0-β0) + (α1-β1)x + (α2-β2)E[M|R=0,x,c] 
Also 
E[Y|R=1,x,c]-  m|x  
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= (3 + 5){E[M|R=1,x,c] - E[M|R=0,x,c]} 
= α2{E[M|R=1,x,c] - E[M|R=0,x,c]} 
 
Thus, under assumption A2, these quantities can be interpreted as the residual disparity and 
disparity reduction under an intervention to equalize M within levels of X (proposition 2). Note that 
if 4=0 such that α1=β1 and 5=0 such that α2=β2 we obtain the results under linear models in the 
main text. 
 
For Proposition 3 (i.e. equalize the distribution of childhood SES X and test scores M across race R), 
the results under an Oaxaca-Blinder decomposition with models from set 2 equate to results using 
linear models from set 3 since under assumptions A1’ and A2’: 
 
xm = xm E[Y|R=1,m,x,c] P(m|R=0,x,c)P(x|R=0,c) 
= xm (0 + 1 + 2x + 3m + 4x + 5m + 6’c) P(m|R=0,x,c)P(x|R=0,c) 
= 0 + 1 + (2 + 4) E[X|R=0,c] + (3 + 5) E[M|R=0,c] + 6’c  
Similarly,  
E[Y|R=0,c] = xm E[Y|R=0,m,x,c] P(m|R=0,x,c)P(x|R=0,c) 
= xm (0 + 2x + 3m + 6’c) P(m|R=0,x,c)P(x|R=0,c) 
= 0 + 2E[X|R=0,c] + 3E[M|R=0,c] + 6’c  
Thus, x -E[Y|R=0,c]  = 1 + 4E[X|R=0,c] + 5E[M|R=0,c] 
Also, 
E[Y|R=1,c] = E[Y|R=1,x,m,c]P(x|R=1,c) 
= xm (0 + 1 + 2x + 3m + 4x + 5m + 6’c) P(m|R=1,x,c)P(x|R=1,c) 
= 0 + 1 + (2 + 4) E[X|R=1,c] + (3 + 5) E[M|R=1,c] + 6’c  
Thus, E[Y|R=1,c]- xm = (2 + 4) {E[X|R=1,c] - E[X|R=0,c]} + (3 + 5) {E[M|R=1,c] - E[M|R=0,c]}  
 
Note that 
E[Y|R=1,c]= xm E[Y|R=1,m,x,c] P(m|R=1,x,c)P(x|R=1,c) 
=xm (α0 + α1x + α2m+ α3’c) P(m|R=1,x,c)P(x|R=1,c) 
= α0 + α1E[X|R=1,c] + α2E[M|R=1,c] + α3’c 
Similarly we have that: 
E[Y|R=0,c]= xm E[Y|R=0,x,c] P(m|R=0,x,c)P(x|R=0,c) 
=xm (β0 + β1x + β2m + β3’c) P(m|R=0,x,c)P(x|R=0,c) 
= β0 + β1E[X|R=0,c] + β2E[M|R=0,c] + β3’c 
Thus, 
E[Y|R=1,c]-E[Y|R=0,c] 
= (α0-β0) + α1E[X|R=1,c]- β1E[X|R=0,c] + α2E[M|R=1,c]- β2E[M|R=0,c] 
= (α0-β0) + α1E[X|R=1,c]- β1E[X|R=0,c] + α2E[M|R=1,c]- β2E[M|R=0,c]  
+ α1E[X|R=0,c] – α1E[X|R=0,c] + α2E[M|R=0,c] – α2E[M|R=0,c] 
= (α0-β0) + (α1-β1)E[X|R=0,c] + (α2-β2)E[M|R=0,c] + α1{E[X|R=1,c]-E[X|R=0,c]} + α2{E[M|R=1,c]-
E[M|R=0,c]}  
 
In an Oaxaca-Blinder decomposition, the terms (α0-β0) and (α1-β1)E[X|R=0,c] and (α2-
β2)E[M|R=0,c] would be referred to as the “unexplained portion” and the third term α1{E[X|R=1,c]-
E[X|R=0,c]} and fourth term α2{E[M|R=1,c]-E[M|R=0,c]} would be referred to as the “explained” 
portion. 
 
Note that by definition, (α0-β0)= 1, β1 = 2, β2=3, (α1-β1)= 4, and (α2-β2)= 5. 
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Thus, 
x -E[Y|R=0,c]   
= 1 + 4E[X|R=0,c] + 5E[M|R=0,c] 
= (α0-β0) + (α1-β1)E[X|R=0,c] + (α2-β2)E[M|R=0,c] 
Also, 
E[Y|R=1,c]- x  
= (2 + 4) {E[X|R=1,c] - E[X|R=0,c]} + (3 + 5) {E[M|R=1,c] - E[M|R=0,c]}  
= α1{E[X|R=1,c] - E[X|R=0,c]} + α2{E[M|R=1,c] - E[M|R=0,c]}  
 
Thus, under assumptions A1’ and A2’, these quantities can be interpreted as the residual disparity 
and disparity reduction under an intervention to equalize X and M (proposition 3). Note that if 
4=0 such that α1=β1 and 5=0 such that α2=β2 we obtain the results under linear models in the 
main text. 
 
For Proposition 4 (i.e. equalize the distribution of test scores M across race R), the results under a 
detailed Oaxaca-Blinder decomposition, with models from set 2, can be used to obtain results using 
linear models from set 3, since under assumption A2: 
 
m = xm E[Y|R=1,m,x,c] P(m|R=0,x,c)P(x|R=1,c) 
= xm (0 + 1 + 2x + 3m + 4x + 5m + 6’c) P(m|R=0,c)P(x|R=1,c) 
= 0 + 1 + (2 + 4) E[X|R=1,c] + (3 + 5) E[M|R=0,c] + 6’c  
Similarly,  
E[Y|R=0,c] = xm E[Y|R=0,m,x,c] P(m|R=0,x,c)P(x|R=0,c) 
= xm (0 + 2x + 3m + 6’c) P(m|R=0,x,c)P(x|R=0,c) 
= 0 + 2E[X|R=0,c] + 3E[M|R=0,c] + 6’c  
Thus, x -E[Y|R=0,c]  = 1 + 2{E[X|R=1,c]-E[X|R=0,c]} + 4E[X|R=1,c]+ 5E[M|R=0,c] 
Also, 
E[Y|R=1,c] = E[Y|R=1,x,m,c]P(x|R=1,c) 
= xm (0 + 1 + 2x + 3m + 4x + 5m + 6’c) P(m|R=1,x,c)P(x|R=1,c) 
= 0 + 1 + (2 + 4) E[X|R=1,c] + (3 + 5) E[M|R=1,c] + 6’c  
Thus, E[Y|R=1,c]- m = (3 + 5) {E[M|R=1,c] - E[M|R=0,c]}  
 
Note that 
E[Y|R=1,c]= xm E[Y|R=1,m,x,c] P(m|R=1,x,c)P(x|R=1,c) 
=xm (α0 + α1x + α2m+ α3’c) P(m|R=1,x,c)P(x|R=1,c) 
= α0 + α1E[X|R=1,c] + α2E[M|R=1,c] + α3’c 
Similarly we have that: 
E[Y|R=0,c]= x E[Y|R=0,x,c] P(m|R=0,x,c)P(x|R=0,c) 
=x (β0 + β1x + β2m + β3’c) P(m|R=0,x,c)P(x|R=0,c) 
= β0 + β1E[X|R=0,c] + β2E[M|R=0,c] + β3’c 
Thus, 
E[Y|R=1,c]-E[Y|R=0,c] 
= (α0-β0) + α1E[X|R=1,c]- β1E[X|R=0,c] + α2E[M|R=1,c]- β2E[M|R=0,c] 
= (α0-β0) + α1E[X|R=1,c]- β1E[X|R=0,c] + α2E[M|R=1,c]- β2E[M|R=0,c]  
+ α1E[X|R=0,c] – α1E[X|R=0,c] + α2E[M|R=0,c] – α2E[M|R=0,c] 
= (α0-β0) + (α1-β1)E[X|R=0,c] + (α2-β2)E[M|R=0,c] + α1{E[X|R=1,c]-E[X|R=0,c]} + α2{E[M|R=1,c]-
E[M|R=0,c]} 
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A so-called detailed Oaxaca-Blinder decomposition would refer to the terms (α0-β0) and (α1-
β1)E[X|R=0,c] and (α2-β2)E[M|R=0,c] as the unexplained portion, and then partition the 
“explained” portion into the part independently explained by X i.e. α1{E[X|R=1,c]-E[X|R=0,c]} and 
the part independently explained by M i.e. α2{E[M|R=1,c]-E[M|R=0,c]}, with all terms summing to 
equal the total disparity E[Y|R=1,c]-E[Y|R=0,c]. 
 
Note that by definition, (α0-β0)=1, β1=2, β2=3, (α1-β1)=4, and (α2-β2)=5. 
 
Note also that 
(α1-β1)E[X|R=0,c] + α1{E[X|R=1,c]-E[X|R=0,c]} 
= α1E[X|R=1,c] - β1E[X|R=0,c] + β1E[X|R=1,c] - β1E[X|R=1,c] 
= (α1-β1)E[X|R=1,c] + β1{E[X|R=1,c]-E[X|R=0,c]} 
 
Thus, m -E[Y|R=0,c]   
= 1 + 2{E[X|R=1,c]-E[X|R=0,c]} + 4E[X|R=1,c]+ 5E[M|R=0,c] 
= (α0-β0) + β1{E[X|R=1,c]-E[X|R=0,c]} + (α1-β1)E[X|R=1,c]+ (α2-β2)E[M|R=0,c] 
= (α0-β0) + α1{E[X|R=1,c]-E[X|R=0,c]} + (α1-β1)E[X|R=0,c]+ (α2-β2)E[M|R=0,c] 
Also, 
E[Y|R=1,c]- m  
= (3 + 5) {E[M|R=1,c] - E[M|R=0,c]} 
= α2{E[M|R=1,c] - E[M|R=0,c]} 
 
Thus, under assumption A2, the residual disparity under an intervention to equalize M alone is in 
fact equal to the sum of the “unexplained” portion and the portion “independently explained” by X. 
The disparity reduction is equal to the portion “independently explained” by M. (Note that these 
formulae equate to the ones in the main text if 4=0 such that α1=β1 and 5=0 such that α2= β2).  
 
This result provides some further intuition for why the disparity reduction under Proposition 4 
does not generally equal the difference between reductions under Proposition 1 (equalize X alone) 
and Proposition 3 (equalize X and M). This would only be so under the special case α1=ω1 i.e. M 
does not mediate the effect of X (and that both assumptions A1 and A2 hold). Only in that special 
case could the portion “independently explained” by X be interpreted as the disparity reduction 
under an intervention to equalize X alone (i.e. Proposition 1). 
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